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Abstract

Interactive tools for shape modeling with hierarchical implicit surfaces have been limited both
by the high computational cost of visualization, and the lack of techniques for direct surface
manipulation. To address the visualization issue, Hierarchical Spatial Caching is developed.
This novel technique combines caching and spatial approximation to accelerate queries of the
functional model tree. By reducing the cost of evaluating cached branches from O(N) to O(1), an
order-of-magnitude improvement in visualization speed is realized. A new implicit sweep surface
formulation which supports direct manipulation of the sweep pro�le is also developed, providing a
powerful and exible free-form implicit primitive. These new techniques form the core of a proof-
of-concept interactive modeling environment, called ShapeShop. ShapeShop provides a level of
interactive control over hierarchical implicit models which has not been previously available. A
survey of current techniques for shape modeling with implicit surfaces is also provided.
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Chapter 1

Introduction

Interactive shape modeling is a wide-ranging topic with a history reaching back to the earliest
days of interactive computing. For example, one of the �rst works in computer graphics was the
SketchPad system, the subject of Ivan Sutherland’s dissertation in 1963 [111]. Sketchpad, one of
the pioneering works in Computer-Aided Design [47], was essentially a 2D modeling system. The
interaction techniques introduced in Sketchpad have heavily inuenced the design of modern 3D
modeling interfaces.

One issue inherent in any 3D modeling system is how to represent shapes. The common
shape representation techniques have varying strengths and weaknesses with respect to di�erent
interaction techniques. For example, parametric spline patches can be easily sculpted by manip-
ulating their control points, but applying similar deformations to a sphere de�ned as an implicit
surface is quite di�cult. In contrast, creating a blend surface between two solid objects repre-
sented using parametric patches can be extremely di�cult, while blending two implicitly-de�ned
solid objects is nearly trivial. Modern shape modeling interfaces are heavily inuenced by these
di�erences. In fact, most commercial modeling tools are identi�ed by how they represent shapes -
some are \parametric" or \patch-based" modelers, while others are \mesh editors", \subdivision
systems", \volume sculpting tools", and so on. The design of these interfaces is driven by what
kinds of operations the underlying shape representation easily supports.

In this respect, implicit surfaces are simply another option in the library of shape represen-
tation techniques. However, implicit surfaces have some tangible bene�ts in the domain of solid
modeling [85, 86], which is a subset of shape modeling explicitly concerned with the representa-
tion of 3D models which are in a sense \isomorphic" to some real-world shape. Not all models
used in computer graphics are solid models - for example, pieces of cloth are often represented
by in�nitely-thin triangle meshes. However, this is usually done for e�ciency, and solid models
arguably would be more accurate since all physical objects have a volume (and in the case of
deformable surfaces, are known to produce more realistic simulations [31]). With the increasing
availability of rapid prototyping machines, also known as \3D printers", interest in solid model-
ing is growing, and with it the need for solid modeling interfaces. This work will focus on such
interfaces.

Solids can be represented in a variety of ways. The most common approach in computer
graphics is to represent a solid by describing it’s boundary - the in�nitely-thin surface that
makes up the exterior of the solid. Complex boundaries are usually described by combining a
set of boundary patches. The union of the boundary patches encloses some 3D space, which is
the volume of the solid. Hence, the boundary of a cube could be 6 square patches. This type
of solid is often referred to as a boundary represention or B-Rep [85, 86]. Common techniques
used to de�ne boundary patches include parametric spline surfaces, triangle meshes, subdivision
meshes, and analytic surfaces such as conics.

The alternative to boundary representations are volumetric representations, where the solid
is represented directly. Volumetric representations are based on the concept of spatial enumer-
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ation, where each point is classi�ed as being inside or outside the volume. Note that while
any volumetric representation can be considered a boundary representation (since the surface of
the volume is it’s boundary), the reverse is not true. The fundamental distinction is that with
volume representations, any 3D point can always be classi�ed as inside or outside the surface.
This is known as the point classi�cation test, and is inherently related to the notion of validity
of solid models. With B-Reps, it is possible to have a hole or \crack" between two boundary
patches, or to have two boundary patches intersect. In these cases, \inside" and \outside" are
not mathematically well-de�ned, and hence (for the purposes of representing a solid) the model
is invalid [85].

With respect to validity in solid modeling, volumetric models have clear bene�ts over bound-
ary representations. While this may seem like a minor di�erence, invalid models are a signi�cant
problem because many applications of solid modeling, such as physical simulation, assume that
the input models are valid. With invalid models, the results of the simulation are meaning-
less. Invalid boundary models are so prevalent that extensive research is being carried out on
techniques to automatically repair broken B-Rep surfaces [20].

This validity problem motivates the need for interactive volume modeling interfaces. How-
ever, there are many di�erent types of volumetric representation. In this work, a speci�c type of
volume model known as a BlobTree implicit model [120] will be used. The BlobTree modeling
framework has a variety of useful properties. Solids can easily be combined using the Boolean
operations of Constructive Solid Geometry (CSG). The BlobTree also supports smooth blending
between solids, as well as global deformation operations. The BlobTree is built on functional
implicit volumes and operators, and hence curved surfaces are mathematically smooth (except
at creases). Since operators are functional, rather than based on geometric algorithms, they are
agnostic to scale and complexity. Hence, two solids at grossly di�erent scales can be combined
without any need for special processing or algorithms1. Regardless of how intricately detailed the
two shapes are, one can always be subtracted from the other by applying trivial mathematical
operations, and the result is always mathematically exact. The procedural, hierarchical nature
of BlobTree models supports animation directly. And, since the entire model hierarchy is dy-
namically evaluated, any modeling operation which has been applied can always be reversed at
any later time, essentially providing an in�nite and non-linear \undo" facility.

These properties are very desirable in an interactive solid modeling context. However, there
are some practical di�culties. Common boundary representations such as meshes and spline
patches, with their simple explicit de�nitions of the surface, provide a straightforward pipeline
to both visualization (rendering) and direct surface manipulation. BlobTree implicit models
provide no such facility. The terms \implicit model" and \implicit surface" are often used
interchangeably, and as this name suggests, the surface is de�ned implicitly as the solution set of
some general equation. Solving for this three-dimensional solution set requires a time-consuming
search through 3D space. Time-consuming visualization algorithms do not �t well into traditional
interactive 3D modeling interfaces, which rely heavily on frequent design iteration and constant
visual feedback. The lack of an explicit surface also makes basic shape editing very di�cult,
as the surface cannot be directly manipulated. Direct surface manipulation has long been a

1of course, simultaneous visualization of both scales can be quite di�cult
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feature of B-Rep modeling systems, and is virtually a necessity for any modern interactive shape
modeling tool.

It seems clear that implicit surfaces have the potential to greatly simplify solid modeling
interfaces. However, when comparing the array of commercially available B-Rep and implicit
modeling systems, an overwhelming disparity is immediately apparent. B-Rep systems are clearly
the current favorite for interactive modeling. Implicit surfaces are making inroads in some
areas, such as surface reconstruction from range scans, and many of the aforementioned B-Rep
repair systems are based on implicit techniques [20]. However, the two problems noted above
- interactive visualization and direct surface editing - essentially preclude the use of implicit
surfaces in interactive modeling systems. It is these issues which this research aims to address.

1.1 Goals

Since implicit models lack an explicit de�nition of the surface, visualization techniques must
\�nd" the surface using spatial searches. The only information available about a general implicit
surface is the value of it’s de�ning scalar �eld at points in space. Hence, to conduct a spatial
search, many evaluations of the equation which produces the scalar �eld are necessary. Since
these functions are generally quite expensive, visualization is slow (See Section 4.1 for more
details).

As noted, this work focuses on BlobTree implicit models. At a conceptual level, a BlobTree
is de�ned by combining simple primitives, de�ned by scalar functions, using operators, which
are also scalar functions. BlobTree models are created by successively composing these simpler
functions, resulting in a hierarchy of primitive and operator functions. These functions are treated
as \black boxes", meaning that the internal structure of the functions are completely unknown.
While this does lead to more general algorithms, it prohibits many types of optimization which
could speed up visualization.

The �rst goal of this work is to increase the speed at which a changing BlobTree model can
be visualized. Since visualization algorithms are based on evaluations of the BlobTree scalar
�eld, the most promising direction for reducing visualization time is to make evaluations faster.
Hence, a more precise goal is to reduce the cost of evaluating the BlobTree scalar �eld. A variety
of techniques for achieving this goal have been proposed [29, 7, 49, 48, 18, 15, 51], however
none provide the level of improvement necessary for scalable interactive BlobTree modeling. In
retrospect, it is clear that an order-of-magnitude improvement is necessary (and will be achieved
in this work).

Direct control over the implicit surface has also been noted as a signi�cant problem for
interactive implicit modeling. This is particularly true in the BlobTree modeling framework,
where the designer only has control over the position and orientation of the various primitives,
and over a set of parameters. Only indirect control over the surface is possible, by manipulating
these parameters. The e�ects of such abstract parameters can be quite di�cult to predict. A
second goal of this research is to develop techniques which provide more intuitive, direct control
over the implicit surface. In the BlobTree framework, direct control can most easily be realized
at the primitive level. Hence, the goal is narrowed down to developing a BlobTree primitive
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which provides direct control over the surface.
Of course, these two goals are only pieces of a general puzzle. At a more conceptual level, the

purpose of this work is to enable the construction of an interactive BlobTree modeling system.
Without such a system, the BlobTree framework cannot be reasonably compared to existing
interactive modeling systems. Hence, the third goal is to design such a system, with an emphasis
on interaction. This system will be built upon the new techniques developed to address the
interactive visualization and surface manipulation problems. To achieve this goal, some sacri�ces
must be made - particularly with respect to interactive visualization, where maintaining both
high visual accuracy and real-time feedback is extremely challenging.

1.2 Contributions

In the following chapters, several contributions are made. In Chapter 2, an introduction to im-
plicit surfaces and volumes is provided. Mathematical properties related to shape modeling are
discussed, such as composition operators, continuity, and normalization. The sections on percep-
tual discontinuities, normalization images, and the scale problem have not appeared previously
in the literature.

Chapter 3 is closely tied to Chapter 2. Various implicit surface modeling techniques are
compared based on the properties identi�ed in Chapter 2. The goal of this chapter is two-fold.
First, combined with Chapter 2 it provides a modest survey of the state-of-the-art in implicit
surfaces. While the taxonomy developed can undoubtedly be re�ned, no comparable classi�cation
of implicit surface methods is available. Second, the choice of the BlobTree hierarchical implicit
modeling framework as the basis for an interactive system is justi�ed.

The interactive visualization problem is addressed in Chapter 4. A novel technique called
Hierarchical Spatial Caching is developed which signi�cantly reduces the cost of evaluating the
scalar functions that de�ne hierarchical implicit BlobTree models. This new technique combines
aspects of existing traversal cache methods with spatial approximation of scalar �elds. Accelera-
tion structures called cache nodes are placed directly into hierarchical model tree. Dynamically-
generated volume datasets are proposed as a means for realizing cache nodes. A thorough
discussion of implementation issues is provided, as well as various pro�ling results which show
an order-of-magnitude improvement in visualization time. This speed-up is su�cient to provide
interactive visual feedback for moderately complex implicit models. Finally, an extensive analy-
sis of Adaptive Distance Fields (ADFs) is carried out. ADFs have been suggested as a more
suitable data structure for implementing Hierarchical Spatial Caching, however the analysis in
this chapter identi�es several outstanding issues which make ADFs unsuitable for spatial caching.
This chapter includes extensive additional material beyond the published version [97].

Chapter 5 describes a new technique for generating implicit sweep surfaces. The advance here
is the development of a smooth C2 approximation to the distance �eld for an arbitrary set of
closed 2D curves. This smoothed distance �eld is used to generate a sweep template scalar �eld.
The main bene�ts of the resulting 3D sweep surfaces is that they support direct manipulation
of the sweep contour, and are compatible with the BlobTree. Other improvements include the
integration of sharp creases into the sweep template, and three new sweep endcap styles. Several
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applications are also discussed. This chapter includes extra material omitted from the published
version [96].

The techniques developed in Chapters 4 and 5 have been implemented in a prototype inter-
active BlobTree modeling system called ShapeShop. This proof-of-concept system is described
in Chapter 6. ShapeShop includes both traditional and novel sketch-based modeling interaction
styles. A brief overview of the interaction techniques available in ShapeShop is followed by a
implementation details on interactive visualization and the BlobTree architecture used in the
system. In the interests of brevity, this chapter focuses on interactive implicit modeling issues,
and largely avoids the sketch-based modeling aspects which have been published elsewhere [99].

Chapter 7 provides 3D modeling results, primarily in the form of a gallery of hierarchical
implicit models constructed using ShapeShop. These models demonstrate the versatility and
power of ShapeShop. A �nal assessment and summary of the thesis is also included here.

1.3 Scope

In the following chapters (particularly Chapters 2 and 3), readers familiar with implicit surfaces
may notice that discussion of a variety of issues is conspicuously absent. In particular, there will
be little reference to computational aspects of various implicit surface schemes, such as e�ciency
or accuracy. This is intentional - computational limitations rarely persist. For example, implicit
modeling techniques have long been dismissed as being \too slow" for interactive modeling, a
statement which will be debunked in Chapter 4. The analytic properties considered in Chapter 2
are fundamental; their limitations cannot be mitigated with clever algorithms.

The scope of this thesis is also limited to shape modeling. Implicit surfaces have been applied
in a variety of other problem domains, such as animation [124, 40, 120, 33], morphing [54, 16],
and physical simulation [32, 41]. Numerous di�cult challenges exist which will be completely
ignored, such as accurate rendering of implicit surfaces [39], or surface parameterization and
texture mapping [94]. Rather than attempt to provide a brief overview of such a wide-ranging
�eld, this thesis will be limited to issues speci�cally related to the interactive construction of
static solid models.

1.4 Summary

Guaranteed validity, functional representation, in�nite-scale modeling, and non-linear procedural
editing are signi�cant bene�ts of implicit modeling. It is true that implicit modeling is not a
\drop-in" replacement for current B-Rep modeling techniques; designers would have to adopt
some new interaction styles. However, it is by no means certain that these new interaction
styles would be less e�cient or intuitive than the current state-of-the-art in B-Rep modeling.
The primary goal of this research is to provide a framework in which interfaces for interactive
hierarchical implicit modeling can be explored.

In the following chapters, several steps will be made towards this goal. First, the existing
state-of-the-art in shape modeling with implicit surfaces will be analyzed. From the myriad
methods available, the BlobTree hierarchical modeling system will be identi�ed as having the
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most desirable properties for interactive use. The largest drawback of BlobTrees - interactive
visualization - will be addressed with the development of a hierarchical spatial caching technique.
To improve shape control, sweep surfaces which permit direct speci�cation of the sweep contour
will then be developed. Finally, these new techniques will be applied in ShapeShop, a prototype
interactive BlobTree modeling system.



Chapter 2

Shape Modeling with Implicit Surfaces

Beginning with mathematical de�nitions of implicit surfaces and volumes, the major concepts in
implicit modeling are introduced - CSG, blending, and general composition operators, bounded
primitives, C0 and C1 continuity, and normalization. Novel analyses are provided for the per-
ceptual discontinuity and scaling problems. Two new tools, the normalization metric and nor-
malization image, are introduced for analyzing normalization error.

2.1 Implicit Surfaces

Consider a function f that, when applied to a point p 2 E
3, produces a scalar value f(p) 2 R.

A surface S � E
3 can be de�ned by the equality

f(p) = v (2.1)

where v is any scalar value in R. This surface S is an iso-contour of the scalar �eld produced
by f(p), and v is the iso-value that produces S. In computer graphics, S is commonly known
as an implicit surface. Functions f will be referred to as �elds, and speci�c values f(p) will be
called �eld values.

Note that by replacing p with a 2D point, Equation 2.1 can also be used to de�ne 2D implicit
curves. For clarity, some �gures and examples will be shown in 2D.

By the above de�nition, most common surface representations used in computer graphics are
implicit surfaces, because these representations all incorporate the notion of classifying points as
being on or o� the surface. A point is on a triangle mesh if it lies in any of the planar triangles
that de�ne the mesh. A point is o� a NURBS surface if it cannot be produced by summation
of the de�ning B-spline basis functions. Pathological cases, such as non-planar 3D polygons and
fractal surfaces, would seem to be exceptions, however to be useful for shape modeling some
ad-hoc binary condition must be invented.

This binary classi�cation can be used to create a binary implicit surface by de�ning f(p) such
that it is 0 when p 2 S and 1 otherwise. Although rarely identi�ed as such, this type of implicit
surface is used extensively in boolean operations between meshes. However, for higher-order
parametric surfaces such as NURBS surfaces, the only way to determine whether or not p 2 S
is exhautive search of the parameter space - not an appealing option.

Another type of implicit surface is the distance �eld, de�ned with respect to some geometric
entity T:

fT(p) = min
q2T

jq � pj (2.2)

Intuitively, fT(p) is the shortest distance from p to T. Hence, when p lies on T, fT(p) = 0 and
the same surface is created as in the binary implicit surface. Otherwise, a non-zero distance is
returned. T can be any geometric entity embedded in 3D - a point, curve, surface, or solid.

7



8

One challenge when analyzing implicit surfaces is visualizing the underlying scalar �elds. A
common technique is to regularly sample f on a 2D planar slice through the �eld and map the
values to grayscale, creating a �eld image (Figure 2.1a). Another useful visualization can be
created by applying a sin function to the values of f before mapping to grayscale. This creates
a contour diagram (Figure 2.1d).

Figure 2.1: A 2D implicit circle de�ned by the distance �eld f =
p

x2 + y2 � 1. A 2 � 2 region
of the in�nite distance �eld f is visualized in (a) by sampling f at each pixel and mapping the
value to grayscale. The circle lies on the zero iso-contour f = 0, highlighted in red in (a) and
shown explicity in (b). The �eld f is plotted as a standard height map in (c). In (d), a contour
diagram is created by applying (1 + sin(k � f))=2 to the value at each pixel before mapping to
grayscale. The area inside the zero iso-contour, f < 0, is hilighted in red.

The surfaces de�ned so far have all had an iso-value v of 0. This need not always be the case,
however the description and implementation of many algorithms can be simpli�ed by assuming
that the surface lies on the 0 iso-contour. For example, points on the surface are often referred
to as zeroes of f(p). Implicit surfaces de�ned with non-zero v can be rewritten in this form as
f(p) � v = 0.

Non-zero iso-values can be used with distance �elds to de�ne o�set surfaces, where fT(p) = v
and v > 0. Here v is the distance from the o�set surface to T. Note that if T is a closed surface,
then fT(p) = v de�nes two new surfaces - one \inside" the old surface, and another \outside". If
T has no interior, as is the case for points, curves, open surfaces, and solids, then only one o�set
surface is de�ned. In this case, fT(p) = v is referred to as a skeletal primitive.

2.2 Implicit Volumes

If an implicit surface S is closed, then it divides space into 3 sets of points - a �nite interior
volume V , the surface S, and an in�nite exterior volume �V [88, 103, 104, 79]. For simplicity, it
will be assumed that S � V. This set of points can be de�ned as

fV : f(p) � vg (2.3)

where v is the iso-value used to de�ne S. This inequality de�nes an implicit volume. Note that
the sign of the inequality is dependent on f(p), and can always be ipped to de�ne �V . This
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de�nition provides a trivial point containment test [104] - the value of f(p) determines where p

is inside or outside the surface.
Not all implicit surfaces are necessarily implicit volumes. For example, the distance �elds

of the previous section do not de�ne implicit volumes, as Equation 2.3 is true both inside and
outside the surface. Self-intersecting implicit surfaces also cannot de�ne implicit volumes, as
the notion of inside and outside is unde�ned in the self-intersecting regions. However, if T is a
closed, non-self-intersecting surface, then a signed distance �eld can be de�ned where fT(p) < 0
if p lies inside T, and fT(p) > 0 outside.

In practice, creating a signed distance �eld for a non-trivial surface can be very di�cult. The
surface must support both a distance query and a point containment query to de�ne a signed
distance �eld, and hence an implicit volume. One of the advantages of skeletal primitives, which
always de�ne implicit volumes, is that they only require the underlying skeletal elements to
support a distance query [124, 120].

2.3 Solid Modeling

Early 3D modeling systems [88, 85, 86] involved the construction of complex 3D shapes using
simpler volumes such as spheres, cubes, and cylinders. These simple volumes were composed
using boolean operations such as union ([), intersection (\), and subtraction or di�erence (n).
This constructive style of modeling is known as Solid Modeling, or Constructive Solid Geometry
(CSG).

Boolean CSG operations are essentially set operations on 3D points. For example, the union
of two 3D volumes is the set of points inside both volumes. In 1973, Ricci [88] introduced a
very simple approach to performing set operations between implicit volumes, based on functional
composition of the underlying scalar functions. The union of two implicit volumes can be de�ned
as

(f1 [ f2)(p) = min (f1(p); f2(p)) (2.4)

This composition operator produces a new scalar �eld de�ning a new implicit volume. Intersec-
tion and di�erence can be computed using similar methods.

The power of Ricci’s operators is that they are closed under the space of all possible implicit
volumes, meaning that an application of an operator simply produces another scalar �eld de�ning
another implicit volume. This new �eld can be composed with other �elds, again using Ricci’s
operators. Equation 2.4 will always produce the exact union of two implicit volumes, regardless
of how complex they are. Compared with the di�culties involved in applying boolean CSG
operations to B-rep surfaces, solid modeling with implicit volumes is incredibly simple. Examples
of Ricci’s CSG operators are shown in Figure 2.2.

2.4 Blending

Solid modeling is not limited to CSG. Another useful class of operation is the construction of
smooth transitions between two surfaces. These transitions are often known as blends. One
standard type of blend is the \rolling-ball" blend, where the blend surface is de�ned by sweeping
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Figure 2.2: Ricci CSG Operators Union (a), Intersection (b) and Di�erence (c), applied to circles
in 2D and spheres in 3D.

a sphere along a path such that it just touches both surfaces for all points of the path (essentially
\rolling" the sphere around the joint).

Rolling-ball blend surfaces are di�cult to compute. However, functional blend operators
similar to Ricci’s CSG operators can be de�ned for implicit volumes. Ricci’s blend operator (]),
de�ned as

(f1 ] f2)(p) =
�
f1(p)�s + f2(p)�s

� 1

�s (2.5)

produces a new blended volume (Figure 2.3). The parameter s controls the smoothness of the
blend (as s ! 1, ] ! [). This blend operator has the same attributes as the CSG operators,
namely that it is independent of surface complexity and that it produces a blended volume which
can be treated as any other implicit volume.

Figure 2.3: Ricci Blending Operator applied to two circles with blending parameter 6 (a), 12 (b),
and 24 (c). A 3D example is shown in (d).

Blinn [24] introduced another type of implicit volume which was based on the concept of
equipotential surfaces in molecular physics. Blinn was trying to visualize molecular structures
using electron density clouds. The electron density cloud is de�ned by summing the electron
density �elds of the individual atoms in a molecule. These �elds are de�ned by applying a
potential function to a distance �eld generated from a point p. The speci�c potential function
was e�rd2

, where d is the Euclidean distance to p. This �eld has the value 1 at p and smoothly
decreases to 0 at 1. The iso-surface is de�ned by some non-zero v. When the �elds generated
by all the points are summed, a smooth blend surface is created.

Blinn’s blobby molecules were essentially implicit skeletal primitives (Section 2.1). His
Gaussian potential function can be applied to any skeletal primitive de�ned by a distance �eld.
These primitives can be blended using the additive blend operator, +:

(f1 + f2)(p) = f1(p) + f2(p) (2.6)
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Note that this operator is simply a speci�c case of Ricci’s blend, with s = 1.

2.5 Bounded Fields

While Blinn’s Gaussian skeletal primitives were successful at modeling electron density clouds,
they are less useful for interactive modeling. The issue is that the �eld function e�rd2

has in�nite
support, meaning that its value is non-zero everywhere in space. Since the surface is de�ned by
summation of all the point primitives, moving any one of them will change the entire surface.
For this reason, the primitives are said to have global inuence.

Global inuence is very un-intuitive for interactive modeling, and particularly for implicit
modeling, where the underlying scalar �elds are not visible to the designer. When a primitive
is changed, the expected behavior is that it will only a�ect the local area. If a primitive has
global inuence, then changing it locally can a�ect distant portions of the surface, causing much
confusion and frustration.

Nishimura [74] and Wyvill et al [124] introduced new polynomial �eld functions that had �nite
or compact support, meaning that the �eld value is uniformly 0 outside some �nite distance from
the skeletal primitive. Essentially, the non-zero �eld values are bounded within some geometric
region, and for this reason the skeletal primitives are often said to have bounded �elds.

Figure 2.4: Potential functions. (a) Blinn’s Gaussian or \blobby" function, (b) Nishimura’s
\metaball" function, (c) Wyvill et al’s \soft objects" function, and (d) the Wyvill function.

The bounded �elds used by Nishimura’s Metaballs and Wyvill et al’s Soft Objects are speci�c
cases of a general type of skeletal primitive, de�ned by composition of a potential function g and
a distance �eld:

f(p) = g � dT(p) (2.7)

This separation is very useful for stating guarantees about scalar �elds. If g has compact support,
and T is �nite, then f will necessarily be bounded. Analysis of some properties of f is also
simpli�ed - for any convex skeleton, the blending properties of f are completely determined by
g. The resulting bounded �elds have local inuence and hence preserve a sort of \principle of
least surprise" that greatly improves the usability of constructive implicit modeling.

Most distance �eld composition operators can be rewritten to work on bounded �elds. For
instance, the Ricci union (Equation 2.4) operator can be converted simply by using max instead
of min (and vice-versa for intersection). The Ricci blend (Equation 2.5) is converted by changing
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the sign on the blending parameter. CSG di�erence is more problematic. For bounded �elds,
one way to de�ne the di�erence of f1 � f2 is min(f1; 2 v � f2), where v is the iso-value. This
operator is problematic because it can produce �elds with non-zero values far from the surface.
An example is shown in Figure 2.5e, where one skeletal point primitive has been subtracted from
another. The ring of positive �eld values in the right side of the image can produce undesirable
blending artifacts (See Figure 3.1) and may prevent gradient walks from converging on the
surface. Di�erence operators based on R-functions (modi�ed to support bounded �elds) can
reduce the magnitude of these external values, but not eliminate them completely [51].

Clearly, operators acting on bounded �elds should produce �elds that are also bounded.
However, this is a relatively loose requirement - a \bounded �eld" that stops just short of in�nity
is still bounded, but cannot really be said to provide local inuence. A reasonable constraint
(which holds for all the operators described thus far) is that the output bounds be contained
within the union of the input bounds.

Figure 2.5: Field images of bounded skeletal point primitive (a,b), bounded Bezier curve primitive
(c), Ricci blend of point primitives (d), and CSG Di�erence of point primitives (e).

2.6 Continuity and Manifolds

Many properties of an implicit surface emerge from the mathematical properties of the underlying
scalar �eld f . One critical property is that of continuity. While continuity comes in many forms,
the most basic level of scalar �eld continuity is C0 continuity. In mathematical terms, a C0-
continuous �eld f is a �eld where as the distance between two 3D points p and q decreases to
zero, so does the di�erence between their �eld values f(p) � f(q).

C0 �eld continuity is one of the basic pre-requisites for a variety of other mathematical
statements that can be made about f . One desirable property for solid modeling is that any iso-
surface of f be a closed simple manifold. In terms of 2D surfaces embedded in three dimensions,
a surface is a manifold if some in�nitely-small neighbourhood around any point on the surface
\looks" like a disc [89]. If a manifold has no boundaries (edges where the surface lies only on
one side, such as the edge of a triangle), then it is said to be closed. Closed manifolds which
have no self-intersections are said to be simple. In 3 dimensions, a closed simple manifold has a
well-de�ned interior and exterior, and hence a well-de�ned volume. This is nececssary for solid
modeling, as only surfaces with well-de�ned volumes can be considered solids (Section 2.2). To
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simplify exposition, a surface will be said to be manifold when it is a closed simple manifold.
Note that the iso-surface may include multiple un-connected surfaces, in this case each surface
is analyzed independently.

Scalar �elds can be classi�ed with respect to continuity and manifold properties. Binary
�elds are not C0; the �eld values \jump" between 0 and 1 but do not make smooth transitions.
Distance �elds are C0, however the manifold properties of the zero iso-contour are determined
entirely by the geometric skeleton. The skeleton may not be closed, may have self intersections,
or may not even be a surface. In any of these cases, the zero iso-contour is not manifold1.

O�set surfaces of distance �elds are manifold, despite the degenerate interior boundaries that
can occur at certain iso-values. For example, a degenerate point occurs at the center of the dis-
tance �eld of a sphere when the iso-value is equal to the sphere radius. These interior iso-surfaces
are in�nitely thin and can be removed using a topological process known as regularization [85]
which removes all extraneous lower-dimensional artifacts. Regularization is based on classifying
points as either boundary2 or interior, where interior points are those points inside the volume.
Hence, regularization cannot repair volumes with self-intersections because the notion of \inside"
is no longer mathematically well-de�ned.

Since o�set surfaces of distance �elds are manifold, all non-zero iso-contours of skeletal implicit
primitives are manifold. Unlike distance �elds, the zero iso-contour is not used in constructive
modeling with bounded skeletal primitives. Hence, for modeling purposes, skeletal primitives
always produce manifold iso-surfaces. This is a key distinction between skeletal primitives and
distance �elds.

Since a constructive modeling system will involve functionally combining implicit surfaces,
the mathematical properties of composition operators must also be analyzed. Consider a general
binary operator g(f1; f2). Iso-surfaces of g(f1; f2) can only be manifold if they are C0, so it
is essential that g preserve C0 continuity. As noted by [17], g de�nes a 2D scalar �eld which
maps from E

2 to R. If f1, f2, and g are all C0, then the scalar �eld produced by g(f1; f2) is
guaranteed to be C0. While C0 continuity is a necessary condition for manifold iso-surfaces, it
is not su�cient. If f1 = v and f2 = v are manifold, then for most of the standard operators,
g(f1; f2) = v is manifold. However, the necessary conditions for g to preserve manifold iso-
contours are unknown in computer graphics.

Based on these mathematical properties, certain statements can be made about constructive
modeling with implicit surfaces. One key property is that if the primitives in use are C0 and
have manifold iso-surfaces, and all operators in use are C0 and preserve manifold iso-surfaces,
then surfaces created with the system will be C0 and manifold. Using this set of primitives and
operators, it is impossible to create an implicit model that does not de�ne a volume. This is very
useful for interactive volume modeling, as it means that the designer cannot \break" the system
and produce an invalid model.

1Again, \manifold" is used here as a shorthand here for \closed simple manifold"
2The term boundary is used here in a point-set-topology sense [115], boundary points are members of the

closures of both the interior and exterior sets of points. For a valid implicit volume, boundary points are de�ned
by f(p) = v and interior points by f(p) < v.
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2.7 C1 Continuity and The Gradient

C0 continuity, which ensures that there are no \jumps" in a function, is the most basic form of
continuity. Higher-order continuity is de�ned in terms of derivatives of functions. For example,
if the derivative of a one-dimensional scalar function is continuous, then the scalar function has
�rst derivative or C1 continuity.

In the case of a 3D scalar �eld f , the �rst derivative is a vector function known as the gradient,
written rf and de�ned as:

rf(p) =

�
@f(p)

@x
;
@f(p)

@y
;
@f(p)

@z

�
(2.8)

If rf is de�ned at all points, and the three one-dimensional partial derivatives are each C0, then
f is C1.

Surfaces have a related but di�erent notion of C1 continuity. Informally, C1 surface continuity
requires that the surface normal vary smoothly over the surface. The surface normal at p is the
unit vector perpendicular to the surface. If no unique surface normal can be de�ned, such as on
the edge of a cube, then the surface is not C1 along the edge. Note that self-intersections are
also not C1, so a closed C1 surface is necessarily manifold 2.6. For points on an implicit surface
f(p) = v, the surface normal can be computed by normalizing the gradient vector rf .

Surface continuity has direct implications for computer graphics. Shading on a surface at a
point p is largely controlled by the surface normal. If the surface is not C1, the gradient (and
hence the normal) can change direction signi�cantly at the discontinuity. At the C1 discontinuity,
a shading artifact will appear when the surface is rendered (Figure 2.6b). Hence, C1 continuity
is very desirable for modeling smooth surfaces.

If f is C1, then any iso-surface of f is C1. Unsigned distance �elds are never C1. This is
easily shown in 1D, the \distance function" for a point at the origin is simply the absolute value
function, which is not C1. Hence, the distance �eld for any 3D skeleton will not be C1 at the
skeleton. Signed distance �elds are C1 if the skeleton is convex. If the skeleton is non-convex,
then some points in space are equidistant to multiple points on the skeleton. There is no unique
solution to Equation 2.2, and C1 discontinuities occur in both signed and unsigned �elds. For
example, a C1 discontinuity occurs at the center of the distance �eld for a sphere.

Skeletal implicit primitives are created by applying a potential function to an unsigned dis-
tance �eld (Equation 2.7). Although the distance �eld is never C1 at the skeleton, these dis-
continuities can be removed by using a suitable potential function [9]. Speci�cally, if the �rst
derivative of the 1D potential function is 0 at the origin, then the skeletal primitive becomes C1

on the skeleton. However, C1 discontinuities in the distance �eld due to non-convex skeletons
are still present in the skeletal primitive �eld. Note that if the potential function is bounded, it
must also have a zero �rst derivative when it reaches 0, and must be C1 in the non-zero interval,
for any skeletal primitive to be C1.

As with C0 continuity, no discussion is complete without considering the continuity of opera-
tors. Again, if f1 and f2 are C1, and g is C1, then g(f1; f2) is necessarily C1. However, analysis of
operators is complicated by the fact that it is sometimes desirable to create a C1 discontinuity.
This case occurs whenever a crease in the surface is desired. For example, a cube is not C1
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because tangent discontinuities occur at each edge. To create creases using C1 primitives, the
operator must introduce C1 discontinuities, and hence cannot be C1 itself.

A common type of operator which must create creases are CSG operators, such as union and
intersection. However, the manner in which C1 discontinuities are introduced into the �eld is
quite important. For example, the min() union operator (Equation 2.4) creates C1 discontinuities
at all points where f1(p) = f2(p). When applied to two spheres, the discontinuities produced by
this union operator result in a crease on the surface (Figure 2.6a), which is the desired result.
However, the discontinuities extend into the �eld outside of the surface, which is not visible in
this image. If a blend is then applied to the result of the union, the C1-discontinuous plane in
the �eld produces a shading discontinuity (Figure 2.6b). To avoid this problem, CSG operators
have been developed [17] which are C1 at all points except those where f1(p) = f2(p) = v.
Hence, creases are only introduced at the v iso-surface, and the shading discontinuity in the
blend surface is removed (Figure 2.6c).

Figure 2.6: Point blended to two union of two spheres (a) using C0 Ricci union operator (b) and
C1 Barthe union operator (c). The Ricci union has a C1 discontinuity plane which shows up
as a crease through the middle of the contour diagram (d). The Barthe contour diagram (e) is
smooth except at the desired surface crease.

2.8 Higher Order Continuity and Perceptual Discontinuities

Higher-order continuity is important in many situations. For instance, C2 continuity, also known
as curvature continuity, is a requirement in many engineering applications. The notion of con-
tinuity is generalized as Cn continuity, with C1 being a desirable goal. For instance, Blinn’s
Gaussian implicits are C1.

While many skeletal implicit primitives have higher-order continuity, formulating continuity-
preserving operators is more di�cult. Particularly challenging is the construction of CSG oper-
ators, which must introduce C0 creases but also maintain higher-order continuity away from the
creases. For example, Barthe’s operators [17] achieve only C1 continuity.

However, with regards to perceived surface smoothness, continuity is necessary but not suf-
�cient. Continuity is a mathematical property of functions. A surface may be C1 continuous,
but appear to have a crease, because of a very high-frequency region in the underlying scalar
�eld. An example of this situation is shown in Figure 2.7d, where two surfaces are joined with a
very sharp blend, and then blended with another. Although there appears to be a crease in the
�nal surface, like the C1 discontinuity in Figure 2.6b, the underlying �eld is in fact C2.
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Unfortunately these perceptual discontinuities are largely determined by subjective human
judgement. For example, the apparent crease in Figure 2.7d may disappear when examined
close-up. This viewer-dependence hinders the construction of mathematical tools for analyzing
perceptual discontinuities. Still, there are situations where such high-frequency surface variations
are likely to occur. Perceptual discontinuites will be a factor in the analysis of the implicit surface
approximation schemes in Chapters 4 and 5.

Figure 2.7: Additive blending of two point primitives de�ned by potential functions (1 � d2)n,
where n = 2 (a), n = 3 (b), and n = 4 (c). The blend becomes smoother as continuity increases.
In (d), a smaller point primitive is blended to two other primitives which have been blended using
Equation 2.5 with a large blending parameter. Although the �eld is C2, there appears to be a
discontinuity because the underlying �eld changes very quickly.

2.9 Field Normalization and Surface Convergence

The gradient rf of a scalar �eld encodes two important pieces of information - the maximum
rate-of-change of f , and the direction in which this maximum occurs. A desirable property of
�elds useful for implicit modeling is that rf always points \towards" the surface. If this is the
case, then it is possible to reach the surface from any point by taking tiny steps in the direction
of the gradient3.

Distance �elds have two properties related to the gradient which are very useful. First, in
a distance �eld, rf always points towards the nearest point on the surface. Second, distance
�elds are normalized [103, 22]. A normalized �eld is one in which the gradient has a magnitude
of 1 everywhere in the �eld (krf(p)k = 1). Given these two properties and a point p anywhere
in space, the nearest point on the surface can be found directly - it is p + f(p)rf(p). In fact,
distance �elds are not strictly normalized, because rf is unde�ned at C1 discontinuities (points
on the distance surface, and points equi-distant from the skeleton). In these cases none of the
nearest points can be found, since the gradient is unde�ned. For convenience, these discontinuities
will be disregarded when discussing normalization.

Normalization is a tenuous property and is very di�cult to maintain, especially when combin-
ing scalar �elds with C1 (or greater) composition operators. Bounded �elds by de�nition cannot
be normalized, since rf is 0 outside the bounds. However, even inside the bounds, f can only
be normalized if the potential function is linear. The smoother potential functions necessary to
create C1 primitives (Section 2.7) rule out normalization.

3In some �elds, the gradient always points away from the surface
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Even if f is not normalized, it is still possible to use the gradient to converge on the surface.
To see how, consider a distance �eld scaled by 2, f2 = 2fT. In this case, krf2k = 2. Essentially,
krfk is a measure of the local scaling of the �eld values, so the nearest point to p on the surface
is

p +
f2(p)rf2(p)

krf2(p)k
(2.9)

Unfortunately, on bounded �elds such as those in Figure 2.5, evaluating this equation will not
produce a point on the iso-surface. One consequence of normalization is that all higher-order
derivatives are 0. In non-normalized �elds where the higher-order derivatives are non-zero (such
as in smooth bounded �elds), Equation 2.9 only approximates the correct distance. However,
repeated application of Equation 2.9 will eventually produce a point on the surface under some
relatively weak conditions 4. This iteration is known as surface convergence. Note that if the
surface iso-value v is non-zero, then the convergence iteration is instead:

p +
(f(p) � v)rf(p)

krf(p)k
(2.10)

These convergence iterations assume that rf(p) is non-zero. One drawback of bounded �elds
is that the gradient is zero in most of space. Hence, Equation 2.10 will only converge on the
surface if the start point has a non-zero �eld value. In �elds with in�nite support, convergence
occurs from any point in space.

Surface convergence is a critical tool for visualizing implicit surfaces, and in this domain it
is desirable that surface convergence occur as quickly as possible. Higher normalization error
in non-linear �elds generally leads to a larger number of iterations of Equation 2.10 necessary
to reach a given error tolerance, as each step is more likely to under-shoot or over-shoot the
surface. Normalization also has other bene�ts [22]. For example, in a normalized �eld, an
o�set surface created by modifying the iso-value is equivalent to a distance-based o�set surface.
Also, normalized �elds have a consistent \blending radius" which makes the results of blending
operations more consistent and predictable. Tools for evaluating normalization are described in
the next section.

2.9.1 Analyzing Field Normalization Error

Strict normalization is generally not attainable for the scalar �elds used in implicit modeling.
Even if the �elds of primitives are normalized, few operators preserve normalization, particularly
blending operators. However, since normalization is a key property for predictable implicit mod-
eling, it is useful to be able to compare the normalization error in di�erent �elds. Normalization
error at a point p is de�ned as j1 � krf(p)kj, and a normalization metric over a �eld f 5 can
then be de�ned as:

normf = max
p

(j1 � krf(p)kj) (2.11)

4The convergence step is essentially a Newton iteration, which is known to be relatively stabe [84] but is only
guaranteed to �nd the nearest local minimum. Hence, it is necessary that the �eld be monotonic along the path
to the surface.

5In bounded �elds, only the normalization error at points where f 6= 0 should be considered.
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In a normalized �eld, normf = 0. However, unles f is described by a simple equation, analyti-
cally computing normf is not possible. The only alternative is to discretely approximate normf

by sampling over some domain. Besides the maximum, various other statistical measures can be
applied to the samples to further analyze the normalization error. If the sampling is regular, a
visual analysis tool called a normalization image can be constructed in the same way as �eld im-
ages (Section 2.1). Normalization images permit a more detailed evaluation of the normalization
error in a particular scalar �eld. Some examples are shown in Figure 2.8.

Figure 2.8: Normalization images for (a) bounded skeletal point primitive, (b) CSG di�erence
of bounded point primitives, and (c) Ricci blend of point primitives. The error scale runs from
0 (black) to � 1 (white). The normalization image for the blended circles from Figure 2.2b is
shown in (d). Since they are distance �elds, the result is normalized everywhere except in the
blending region.

Normalization error is also visible in contour images. If f is normalized, the spacing between
contours is perfectly regular. As the normalization error increases, contour spacing changes, and
can be irregular over the �eld. The normalization error in a bounded point primitive is clearly
visible when comparing the contour image to that of a circle’s distance �eld, as in Figure 2.5b.

2.10 The Scaling Problem

A fundamental issue with skeletal primitive modeling is the scaling problem. Consider a single
point primitive, generated by the composition of some potential function with the distance �eld
of a single point. The question is, how can the size of this point primitive be altered, or scaled?

If the iso-surface is de�ned as f(p) = v, then one option is to change v. However, consider a
more complex case - two points are blended together. How can one be scaled? If v is modi�ed,
both will be scaled. The only solution to scaling primitives is to modify f .

At this point, it is useful to introduce a speci�c potential function. The following potential
function, gw, will be used for all skeletal primitives that follow:

gw(d) =

�
1 �

�
d2

r2

��3

(2.12)

where r is the \radius" of the �eld and the input distance d is clamped to the range [0; r] [123].
Generally, an iso-value of 0:5 is used with this function. The function is C6 continuous and does
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have zero-tangents at either end. A plot of gw is shown in Figure 2.4d, and an additive blend of
two point primitives with r = 1 is shown in Figure 2.10d.

Figure 2.9: The scaling problem. To create a blend between two point primitives of di�erent radius
(a), the potential function must be scaled. The resulting iso-contours of the smaller primitive are
more closely spaced (b) due to higher normalization error (c). The normalization error increases
as the primitive becomes smaller.

By modifying r, the desired scaling result in Figure 2.9 is achieved, however the region of the
�eld containing the scaled primitive has signi�cantly more normalization error than the region
of the un-scaled �eld. The di�erence in normalization error has many undesirable e�ects. An
immediately visible problem is that it results in variable blending behavior when primitives with
di�erent scaling factors are blended (Figure 2.10). Another issue is that the convergence iteration
(Equation 2.10) will require more steps to reach the same level of accuracy. This is the scaling
problem.

Figure 2.10: The sequence of images in (a)-(c) show how the scaling problem creates blends which
are less smooth than when the primitives all have the same scale (d).

There are several possible approaches to mitigating the scaling problem. The �rst is to
modify the potential function. Consider the plots in Figure 2.11a, showing gw with radius 1
and 0:5. At values > 0:5, the scaled function can be improved by \attening" the 1D function,
such that the value at gw(0) is less than 1 (Figure 2.11b). However, The scaled function must
decrease from 0:5 to 0. To improve this region, the function must extend further along the x
axis (Figure 2.11c). However, this \long tail" causes the �eld to extend further out in space from
the iso-surface, increasing the support region of the primitive and breaking the principle of local
support (Section 2.5). Blending with the resulting �eld can be very un-intuitive.
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There is currently no known solution to the scaling problem. There have been attempts to
mitigate the problem [122, 17], however these works generally only improve the blending surface
and do not actually reduce normalization error. When the resulting �elds are used in another
blend, the issues re-appear. It may be that the scaling problem is a fundamental restriction
on skeletal implicit modeling. Any solution will likely involve global iso-surface-preserving non-
linear �eld transformations, an area which has received little attention to date. The normalization
attempts described by [22] may be a reasonable starting point.

Figure 2.11: The scaled potential function (solid line) in (a) has signi�cantly higher normaliza-
tion error than the un-scaled potential function (dashed line). Reducing the height of the scaled
function (b) improves normalization error on the interior of the primitive, but does not help on
the exterior. Extending the �eld radius (c) reduces exterior normalization error, but at the cost
of local inuence.

2.11 Chapter Summary

Although the basic de�nition of an implicit surface is seemingly quite simple, a wide range of
non-trivial details are quickly encountered. In this chapter, the major concepts relating to shape
modeling with implicit surfaces and volumes have been introduced. Solid modeling operations
such as CSG and blending permit the composition of arbitrarily complex shapes. Issues related to
bounded �elds, C0 and C1 continuity, and �eld normalization have been discussed. Recognition
of perceptual discontinuities, analysis of the scaling problem, and the new tools for analyzing
normalization error have not appeared in the literature previously.



Chapter 3

A Taxonomy of Implicit Surfaces

A series of functional properties, introduced in the previous chapter, are chosen for use in a clas-
si�cation of di�erent implicit modeling systems. Major hierarchical implicit modeling frameworks
and other recent implicit surface modeling schemes are classi�ed based on these properties. This
taxonomy is used to select a method for use in an interactive modeling system. The hierarchical
BlobTree implicit modeling framework is chosen.

3.1 Introduction

As noted in the previous chapter, any scalar function in E
3 inevitably de�nes some implicit sur-

face. However, depending on the task, certain functions are \more useful" than others. Unfortu-
nately there is little consensus on which types of implicit surfaces are appropriate for interactive
modeling. In the following sections, an attempt is made to classify a variety of existing implicit
surface techniques, based on their mathematical properties. The goal of this taxonomy is to sup-
port comparisons between di�erent methods, with an eye towards selecting a implicit modeling
framework that will best support interactive modeling.

As with any taxonomy, the properties which are chosen to di�erentiate di�erent implicit sur-
face schemes are somewhat at the whim of those creating the taxonomy. Likewise, the grouping
of di�erent implicit surface techniques into the considered categories is somewhat arbitrary, but
necessary to make the task tractable. Even more problematic is the uidity of implicit surfaces.
Attributes of a binary nature, such as whether or not a function is bounded (Section 2.5), are
quite rare. Many other important properties, such as normalization error considerations, do not
permit such easy categorization. In these cases the statements about di�erent techniques must
be quali�ed with often imprecise terms.

In short, the following classi�cation is proposed only as an initial attempt, and was designed
with interactive modeling in mind. For the task of selecting a technique for interactive modeling
with implicit surfaces, it has served its purpose. These biases must be considered when applying
this taxonomy to other domains.

Another caveat is that the properties mentioned below are largely based on mathematical
aspects, rather than algorithmic issues. This limitation of scope has been enforced due to the
complexity of classifying algorithmic properties. For example, some implicit modeling techniques
have special properties which can be taken advantage of to provide faster visualization [7]. De-
pending on the application, these fast techniques may not produce the desired accuracy or visual
properties. Which speci�c visualization problems should be selected as most important? Fur-
thermore, any discussion of visualization speed is intimately tied to implementation quality and
computing hardware. In most cases, source code is not available, and any attempts to normalize
computation times between 10-year-old computers and state-of-the-art networked clusters are
likely to be erroneous. In short, detailed analysis of these issues for a single implicit repre-
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sentation scheme is non-trivial, and attempts to generalize across the range of implicit surface
techniques considered in this chapter would undoubtedly fail. Hence, this taxonomy is limited
to mathematical issues of shape representation, as outlined in Section 1.3.

3.2 Classi�cation Properties

Continuity The notions of C0 and C1 continuity, as well as the generalization to Ck continuity,
were discussed in Sections 2.6 and 2.7. Field continuity is a critical property for determining
when an implicit surface technique is appropriate for a given application. For constructive
implicit modeling frameworks, continuity of Boolean CSG (Section 2.3) and blending operators
(Section 2.4) will also be considered.

Field Support As discussed in Section 2.5, some �elds have �nite support, meaning that their
non-zero values are contained within some �nite bounding region. This property is often desirable
for computational reasons, however in interactive modeling a more critical implication is that of
local inuence. Of course, an unbounded �eld can always be explicitly bounded, so statements
made about this property will generally refer to the support of the �eld as it is commonly used
in the literature.

Analytic Surfaces Many types of implicit surfaces are de�ned based on a given set of 3D
point samples fpi; fig, such that they either interpolate or approximate the values fi at pi.
These techniques generally cannot represent simple analytic surfaces such as a sphere or cylinder.
Techniques which support these types of basic surfaces will be said to be analytic.

Creases The modi�ed de�nition of C1 continuity given in Section 2.7 permits C1 discontinuities
on the surface to represent creases, which are critical in 3D modeling. This is a binary property
for most implicit surface repesentations, however in some cases there is limited support for certain
types of creases (such as the explicit creases created in MPU methods).

Guaranteed Volumes Most types of implicit surfaces are also capable of de�ning implicit
volumes (Section 2.2). However, only some methods are guaranteed to generate surfaces without
self-intersections, and hence well-de�ned volumes. Further, for constructive implicit modeling
frameworks, this property must be preserved regardless of the operators and primitives involved
(Section 2.6).

Expected Volumes For some types of bounded implicit surfaces de�ned based on point sam-
ples, internal iso-contours can occur which result in a well-de�ned but undesirable volume. These
internal iso-contours are highly problematic in solid modeling contexts. Since the expected vol-
ume is somewhat subjective, for point-sampled surfaces the general requirement will be that all
iso-contours lie on or very near to the initial samples. In constructive implicit modeling the oper-
ators must be considered; the resulting volume will be expected if all iso-contours are connected
to one of the iso-contours of the input �elds.
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Normalization Error Normalization error was introduced in Section 2.9. In general, �elds
with low normalization error lead to well-behaved and e�cient algorithms, particularly with re-
spect to surface-convergence steps. Low normalization error also results in blending behavior
that is more consistent, allowing designers to more easily manipulate blend surfaces. Normaliza-
tion error is highly variable and currently cannot be distilled down into a simple categorization
- each case must be analyzed independently.

3.3 Constructive Modeling Frameworks

Implicit surface modeling techniques generally take one of two paths. The �rst is to construct
complex shapes by composing of simpler shapes (primitives) [88, 124, 120, 4, 106, 18, 58, 11]. The
second is to construct complex shapes directly, generating a single scalar �eld from some given set
of surface or volume samples [92, 35, 113, 34, 72, 114, 56, 73, 75, 87, 105]. Systems taking the �rst
approach will be referred to as constructive modeling framework, while the second will be termed
global �eld approaches. This distinction is somewhat arti�cial, as any global �eld technique
can be used as a primitive in constructive systems [18]. However, there is a clear conceptual
distinction, which is supported by the literature - works on global implicit representation rarely
analyze the resulting �elds for compatibility with constructive frameworks. For example, many
e�cient techniques for interpolating 3D point sets produce additional iso-contours [72, 75, 87].
While not a signi�cant problem for their intended application (surface reconstruction from range
scans), these extra iso-surfaces have serious implications for solid modeling.

3.3.1 Distance Fields, R-Functions, and F-Reps

Procedural modeling with distance �elds is perhaps the oldest application of implicit volume
modeling [88]. However, the introduction of R-functions [90] for shape modeling was a major
advance [104]. R-functions provide a robust theoretical framework for boolean composition of
real functions [103, 79], permitting the construction of Cn CSG operators. These CSG operators
can be used to create blending operators simply by adding a �xed o�set to the result [79].
Although these blending functions are no longer technically R-functions [103], they have most of
the desirable properties and can be mixed freely with R-functions to create complex hierarchical
models. These R-function-based blending and CSG operators will be referred to as R-operators.

While any partition of the real line does in theory have a set of associated R-operators, the
partition used most frequently in computer graphics is such that the zero iso-contour is taken
as the surface, positive values inside, and negative values outside [103, 104, 79]. This implies
that all �elds have in�nite support, and all operators necessarily have global inuence. The term
F-Rep is often used to refer to this class of implicit solid models [4].

As noted in Section 2.6, any surface can be represented as the zero iso-contour of a distance
�eld. While this does mean that both analytic surfaces and creases are inherently supported, it
is also possible to describe non-manifold surfaces with F-Reps. Hence, no volumetric guarantees
can be made. R-operators exist for both signed and unsigned distance �elds. In the unsigned
case, volumes are not de�ned, and furthermore the composition of manifold surfaces can produce
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non-manifold results. With signed �elds, if all initial surfaces are manifold, volume guarantees
can be made.

In general, composition with R-operators produces �elds with very poor normalization, even
if the initial �elds are normalized [17, 22, 51]. Recent work has focused on improving normaliza-
tion [17, 22], however the results are limited (see Section 5.2).

R-operators do not inherently require distance �elds. Any distance-like �elds (�elds with the
desired iso-contour at v = 0) can be composed. Hence, the F-Rep framework can be applied to
a wide variety of implicit surfaces.

3.3.2 BlobTree Modeling

Skeletal primitives (Section 2.5) are de�ned as o�set surfaces in a potential �eld, and have a
nonzero iso-value. In addition, skeletal primitives with �nite skeletons are bounded. The R-
operators used in F-Rep systems cannot be applied to these �elds, and hence an alternate set
of blending operators has been developed. While Shapiro [103] states that a set of R-functions
must exist for such �elds, they have not been extensively studied in the literature1. Some recent
attempts to adapt CSG R-operators have been made [16, 51], however these operators simply
convert the bounded �eld to an unbounded F-Rep, apply standard R-operators, and explicitly
bound the result.

The BlobTree [120] hierarchical modeling framework encapsulates techniques for construc-
tive modeling with skeletal primitives. In general, skeletal primitives have variable continuity
depending on the potential function, although low-degree polynomials (k � 6) are most com-
mon. Regardless, Boolean CSG operators which produce higher than C1 �elds are currently
unknown [19]. Analytic surfaces can be represented, creases can be represented exactly, and
strong volume guarantees can be made. However, existing CSG di�erence operators for bounded
�elds [88, 120, 16, 19, 51] leave non-zero values far from the surface, which can result in unex-
pected additional iso-surfaces after additive blending is applied (Figure 3.1).

Figure 3.1: A CSG Di�erence operation on two point primitives (a) leaves a ring of non-zero
values far from the surface. When combined with additive blending, These values can cause
unexpected behavior (b,c) and additional unwanted iso-contours (d).

Signi�cant scale di�erences beween skeletal primitives will result in high normalization error

1Ricci’s min and max CSG operators [88] do appear to be R-functions, however they are rarely identifed as
such. Also, CSG operators based on R-functions are described by Wvill et al [120], however it is unclear whether
or not they are actually R-functions.
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(Section 2.10). Repeated additive blending also increases normalization error, particularly for
volumes that overlap signi�cantly. Attempts to mitigate this problem using global �eld trans-
formations have met with limited success [51].

The BlobTree framework does not inherently require that all primitives be skeletal primitives.
The only condition is that values inside the surface be larger than the nonzero iso-value, and
that the �eld drops o� to 0 at some distance outside the surface. The sweep templates generated
in Chapter 5 are one example of non-skeletal bounded �elds.

3.3.3 Convolution Surfaces

Convolution surfaces, �rst introduced by Bloomenthal and Shoemake [28], are produced by con-
volving a geometric skeleton S with a kernel function h. Hence, the value at any position in
space is de�ned by an integral over the skeleton:

f(p) =

Z

S

g(r) h(p � r) dr (3.1)

Any compactly-supported function can be used as h, see [107] for a detailed analysis of di�erent
kernels.

Like skeletal primitives, convolution surfaces have bounded �elds. Since they are compatible
with the BlobTree modeling framework, they are in some sense a special case of skeletal prim-
itives. However, composition of convolution surfaces is usually de�ned by composition of the
underlying geometric skeletons, rather than functional composition. The reason for this is to
avoid the bulges that tend to occur when composing multiple skeletal primitives with additive
blending. The surface resulting from convolution of the combined skeleton does not have bulges,
and the �eld is continuous even if the combined skeleton is non-convex. Volumes are preserved,
and normalization error is entirely dependent on the convolution kernel. However, because they
are always o�set a �xed distance from a geometric skeleton, convolution surfaces cannot represent
creases or non-smooth analytic surfaces.

3.4 Uniformly-Sampled Discrete Volume Datasets

Given a set of samples fi of some f(p) distributed at uniform intervals, a scalar �eld ef can
be constructed which approximates f [35]. The sets of samples are often referred to as volume
datasets. The properties of the constructed scalar �eld hinge on the technique used to convert
the fi to ef . Generally, a reconstruction �lter is applied to the samples in some neighbourhood
of p to produce a continuous �eld using interpolation. Although Ck spline-based reconstruction
�lters can be used, C0 to C2 are most common [69, 71]. Field support is arbitrary - the sample set

is assumed to be �nite, so the value of ef(p) outside of the sample set is application-de�ned. As
with any sample-based scheme, analytic surfaces can only be approximated. Similarly, arbitrary
creases cannot be represented. Volume and normalization properties are completely dependent on
the sample set, no general statements can be made in these cases. Implicit surfaces created using
volume datasets may be compatible with either the F-Rep or BlobTree modeling frameworks,
and can be used to de�ne Convolution Surfaces [101].
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3.4.1 Adaptive Distance Fields

The implicit surfaces generated by the Adaptive Distance Field technique [49] are de�ned by
sampling on an octree grid, rather than a regular grid. However, adaptively-sampled volume
datasets are closely related to their uniformly-sampled counterparts in that adaptive sampling
simply attempts to avoid storing all the samples that would be necessary at the highest sampling
frequency. Hence, Adaptive Distance Fields have many properties similar to those listed above.
In particular, creases still cannot be faithfully represented, although if the adaptive sampling is
�ne enough this may be di�cult to discern visually [49]. One di�erence is continuity - standard
reconstruction �lters produce C0 discontinuities if directly applied to irregularly-spaced samples
(Section 4.9).

3.5 Point-Set Interpolation Schemes

A variety of implicit surface representation schemes have been developed which are rooted in the
conceptual model of de�ning a surface based on a point cloud. Given a set of samples which are
assumed to lie on the surface, the problem is to generate an implicit function such that some
iso-contour passes through the sample points (usually the zero iso-contour). These techniques
will be referred to as point-set interpolation schemes.

In some sense, these methods are similar to volume datasets, however there are two key
di�erences. First, volume datasets are constructed from regularly spaced samples2, while point-
set schemes are designed to deal with unstructured point clouds. Second, volume datasets directly
specify the �eld value fi at each sample. Point-set interpolation schemes generally take only
sample positions as input, and assign �eld values automatically. As a result, there is much more
variability in the individual methods, and they must be examined independently. Several recent
methods are explored in the following sections. Two generalizations which can be made are
that none of the techniques can represent analytic surfaces, and that normalization is entirely
dependent on the given set of samples.

All of the following techniques generate iso-surfaces at f = 0, and hence can be functionally
composed within the F-Rep framework (Section 3.3.1). However, modeling systems based on
these techniques generally combine the sample sets instead. This approach has been used with
some success in several interactive implicit modeling systems [65, 13].

3.5.1 Variational Implicit Surfaces

Variational implicit surfaces [92, 113, 34, 114] interpolate or approximate a set of point sam-
ples using a weighted sum of globally-supported basis functions. The resulting scalar �eld f is
sometimes referred to as a Radial Basis Function or RBF [34] 3. Variational implicit surfaces
are Ck, with k dependent on the choice of basis function, although the C2 thin-plate spline is
most commonly used [114, 34]. This basis function is unbounded, hence so is the variational

2Octrees do de�ne a regularly-spaced sampling, they simply avoid storing redundant samples.
3The term RBF refers to the radial symmetry of the basis function applied at each sample point, and hence

referring to the entire f as an RBF is a misnomer. In addition, the basis function need not be radially symmet-
ric [43].
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implicit surface. Since the �eld is globably C2, creases cannot be de�ned. Anisotropic basis
functions [43] can be used to produce �elds which change more rapidly and may appear to have
creases, however the surface is still smooth when inspected at the appropriate scale. The smooth
�eld implies that self-intersections do not occur, and hence volumes are always well-de�ned. The
thin-plate spline guarantees that global curvature is minimized [44], which intuitively seems to
imply that internal zero iso-contours will not occur. However, no formal proof could be located4.

Variational inteprolation has many properties which are desirable for 3D modeling, however
controlling the resulting surfaces is very di�cult. In Chapter 5, variational interpolation will be
used to generate free-form skeletal primitives.

3.5.2 Compactly-Supported Variational Implicit Surfaces

Variational implicit surfaces based on compactly-supported radial basis functions (CS-RBFs)
were proposed as a technique to reduce the computational cost of variational interpolation tech-
niques [72]. Each CS-RBF only inuences a local region, so computing f(p) only requires eval-
uation of basis functions with some small neighbourhood of p. As with the globally-supported
counterpart, the resulting �eld is Ck, creases are not supported, and self-intersections cannot
occur. The local support of each basis function results in a bounded global �eld, however this
also guarantees that additional iso-contours will be present, as noted by various authors [75, 87].

3.5.3 Multi-level Partition of Unity Implicits

Multi-Level Partition of Unity (MPU) Implicit Surfaces [75] are de�ned by a set of point con-
straints with normals. Similar to compactly-supported variational implicit surfaces, the basic
theory behind MPU implicits is to subdivide space into regions and construct a local implicit
approximation of the surface in each region. To evaluate f(p), overlapping basis functions are
blended using partition-of-unity weights generated using Ck functions. However, to optimize
construction an adaptive octree-based spatial subdivision technique is used. Several basis func-
tions have been applied, [75] uses C1 quadrics while [87] uses local Ck radial basis functions
These basis functions produce unbounded �elds, hence the global �eld is unbounded.

Certain types of creases can be represented on a per-cell basis by �tting multiple quadric
surfaces and combing them using functional CSG operators. However, cells with creases must
be detected based on the deviation of the point set normals. This procedure is far from robust,
limiting [75] to edges (two surfaces) and corners (three surfaces)). However, [87] notes that
the local creases are not preserved by the partition-of-unity blending functions. The quadric
representation guarantees that volumes are de�ned, and the octree-based decomposition reduces
the possibility of unwanted internal iso-surfaces, but there is no guarantee that they are voided
completely.

4The author admits only limited familiarity with the related mathematical literature, so such a proof may
indeed exist.
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3.5.4 Implicit Moving Least-Squares

The Implicit moving least-squares (IMLS) technique [105] is closely related to MPU methods.
The major improvement is the addition of value constraints over entire triangles, allowing entire
triangle meshes to be exactly interpolated. Interpolation can also be relaxed, creating smoother
approximations to the original mesh. Normal constraints are also improved, to reduce ringing
artifacts. As with MPU implicits, various Ck basis and weighting functions can be used. Since
adjacent triangles can be interpolated exactly, IMLS can represent creases, but only if exact
interpolation is used - approximating implicit surfaces are always smooth. If the initial mesh is
self-intersecting, the IMLS surface will reproduce these self-intersections, and possibly introduce
others. Since the basis functions have global support, unwanted internal iso-contours are unlikely
to occur, however it is unclear if this is guaranteed.

3.6 Classi�cation Summary

In the previous sections, a variety of implicit surface modeling techniques have been analyzed with
respect to the properties described in Section 3.2. The results of this analysis are summarized in
Figure 3.2. The columns in the table correspond to the properties listed in Section 3.2, and the
rows to the various implicit modeling schemes. In an attempt to be as conservative as possible,
any properties about which there is some debate are marked as having \limited support". In
these cases, the analyses in the previous sections should be consulted.

The Continuity column lists the maximum continuity that can be achieved, including blend-
ing and CSG operations for the constructive frameworks. The Bounded, Analytic Surfaces,
Creases, and Guaranteed Volumes columns are essentially either-or properties, although some
techniques have limited support. The Expected Volumes column indicates what little is known
about this property. Likewise, the Normalization Error column provides only a relative ranking
among the constructive techniques - very little can be said about discrete volumes and point set
interpolation.

3.7 Selecting a Modeling Framework

Ideally, an interactive implicit modeling system would support any implicit surface modeling
technique. However, certain incompatibilities, such as bounded vs unbounded �elds, prevent the
composition of di�erent types of �elds. To construct an internally consistent modeling system, a
speci�c modeling technique must be selected. The purpose of the classi�cation developed in this
chapter was to assist with such a choice.

Some desirable properties are already known. Guaranteed validity, ie the impossibility of
creating self-intersecting surfaces which do not de�ne a volume, is clearly bene�cial. The ability
to represent analytic surfaces is useful in engineering contexts. The local inuence provided by
bounded �elds leads to more intuitive results during interaction with the model. Already, the
possible choices have been narrowed down to two modeling frameworks - BlobTree modeling and
Convolution Surfaces.
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Figure 3.2: Implicit Surface Classi�cation Quick Reference Chart



30

Convolution surfaces do have some compelling bene�ts. In particular, they have the most
controllable normalization error of all the techniques described above. Unfortunately the skeletal-
composition approach used in convolution surface modeling can only represent smooth surfaces.
While this is clearly a promising direction for future work, one must currently step outside of the
convolution framework into a more general modeling system, such as the BlobTree, to perform
basic operations such as boolean CSG.

Hence, the BlobTree remains as the only implicit modeling framework which supports the
desired properties. The main drawback of the BlobTree is that only C1 CSG operators are
currently known. However, this is an area of active research, and smoother methods may be
developed in the future. Similarly, the problematic non-monotonic �eld generated by CSG dif-
ference operations is likely avoidable. Normalization error does seem to be an inherent problem
(Section 2.10), however unlike in the R-operator case, the problem is localized by the bounds of
the relevant �elds. Additional control over normalization error may be possible using bounded
blending operations [51].

3.8 Chapter Summary

Classifying mathematical functions is a di�cult task, perhaps best left to mathematicians. Unfor-
tunately, mathematicians seem to have largely neglected issues relating speci�cally to interactive
computer graphics systems. Hence, in this section a set of functional properties have been iso-
lated and used to classify a set of recent implicit surface modeling techniques. Both hierarchical
modeling frameworks and schemes based on discrete samples have been classi�ed. The result is a
taxonomy of schemes which has been used to select a speci�c system, the BlobTree hierarchical
modeling framework, for use in an interactive system.

A �nal note must be made to emphasize that this classi�cation is only a preliminary attempt.
Like the animation-speci�c comparative study presented in [33], it is biased towards its intended
application - 3D modeling. The taxonomy presented here is not intended to be the �nal word on
the subject, but rather a tool for recognizing the current limitations of implicit volume modeling.



Chapter 4

Hierarchical Spatial Caching

Issues relating to interactive visualization of BlobTrees are introduced. An analysis of existing
caching schemes leads to a novel new approach called Hierarchical Spatial Caching. Conceptual
and practical implementation issues are discussed. Pro�ling results show an order-of-magnitude
improvement in visualization times. Adaptive Distance Fields are analyzed for use in this caching
scheme, and found to be unsuitable.

Some material in this chapter is taken from the publication \Interactive Implicit Modeling with
Hierarchical Spatial Caching" by Schmidt, Wyvill, and Galin [97]. The material appearing here
is due to Schmidt. The Medusa model was provided by Galin.

4.1 The Interactive Visualization Problem

One of the critical constraints on interative tools for hierarchical constructive implicit modeling is
the cost of visualizing the model. Although volume visualization techniques are becoming more
common, traditional 3D modeling interfaces are based on the notion of manipulating surfaces.
Unfortunately, the surface S de�ned by f(p) = v is in some sense unknown. Unlike a parametric
surface patch, there is no function to evaluate which outputs points on the surface. Without
an explicit surface function, visualization algorithms must resort to spatial searches to �nd the
surface. These methods generally produce a discrete sampling of the surface, this sampling can
then be rendered interactively.

A variety of spatial search algorithms for sampling the implicit surface have been developed.
Most approaches produce triangle meshes [124, 109, 53, 5, 64, 93, 57] or point clouds [117, 56, 70,
110]. Regardless of the sampling technique, the fundamental operation in all of these algorithms
is �nding points on (or near) the surface by evaluating f(p). Most algorithms rely on some
geometric approach to �nd points \near" the surface, and then re�ne these guesses, converging
on the surface using repeated evaluations of f(p).

When visualizing complex implicit surfaces, these convergence steps (Section 2.9) consume
the majority of the computational e�ort. As an example, a pro�ling test was performed on a
relatively simple model (100 blended randomly-positioned point primitives) using a standard
polygonization algorithm [26]. The f(p) function was programmed using hand-optimized and
tuned SIMD assembly code, to maximize performance. In this case, at moderate triangle reso-
lutions the evaluation of f(p) consumed 95% of the CPU time. At production-quality triangle
resolutions the cost of f(p) increased to 99%. Similar results have been observed with other
visualization algorithms.

Clearly, the cost of visualizing an implicit surface with spatial search algorithms is directly
dependent on the cost of evaluating f(p). Recent visualization algorithms [70] often report
times of multiple seconds or minutes to sample complex implicit surfaces. Unfortunately, a key
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requirement of interactive modeling is that the surface visualization respond in real-time to the
designer’s actions. To support surface resampling at interactive rates, the cost of evalauting f(p)
must be reduced.

4.2 Problem Analysis and Solution Overview

If f(p) is assumed to be an arbitrary \black box" function, there is essentially nothing that can
be done to reduce it’s evaluation cost. Hence, some narrowing of scope is necessary, and for
the rest of this chapter f(p) will be assumed to be a scalar �eld de�ned by a BlobTree implicit
model.

BlobTree models (Section 3.3.2) are procedural models, de�ned hierarchically by a tree of
nodes. At the leaves of the tree are primitives, the building-block implicit volumes. These are
generally simple implicit volumes [120], although any arbitrarily complex implicit volume can be
used as a primitive. The internal tree nodes are operators, which combine their child nodes into
more complex shapes. Since primitives are simply scalar �elds, and operators simply combine
scalar �elds to produce a new scalar �eld, the result of an operator can be considered to be
a new primitive. This equivalence allows complex models to be incrementally constructed. A
simple BlobTree example is shown in Figure 4.1. For the purpose of this chapter, the functions
de�ning primitives and operators will be considered \black boxes" - no knowledge of their internal
structure will be assumed.

Figure 4.1: The �nal BlobTree model in (a) is created by joining two cylinder primitives with a
blend operator, and subtracting them from a sphere primitive with a CSG di�erence operator. In
(b), the recursive path of a BlobTree evaluation is shown by the red arrow. All the nodes in the
tree are evaluated.

Consider the evaluation of a BlobTree f(p) at a point p. The �eld value is computed by
recursively descending the BlobTree (Figure 4.1b). At interior nodes (composition operators),
the descent may be pruned based on the bounding box of the operator. Eventually, leaf nodes
are evaluated, and then their values are incrementally combined by operators as the recursion
unwinds. Finally, a scalar value is produced at the root of the tree.

Although algorithmically simple, visualizing BlobTree models using this naive approach is
incredibly expensive. Adding a node to a BlobTree increases the cost of evaluating f(p) by some
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factor m, where m is the cost of evaluating the new node. Assuming that the surface is sampled
with k points, and n convergence steps are taken to re�ne each sample position, then adding
adding a new primitive increases the cost of sampling the surface by m � n � k operations. If these
factors are assumed to be constant, then the visualization time doubles as the number of nodes
in the tree doubles.

While linear growth is generally considered quite good from a theoretical standpoint, in prac-
tice the resulting explosion in computational cost prohibits usable interactive BlobTree modeling
systems. Simple models can be manipulated in real-time, however as the timings in Section 4.8.2
clearly show, existing methods are several orders of magnitude too slow to support high-quality
interactive visualization of even moderately complex models.

Since primitives and operators are assumed to be \black boxes", there are few opportunities
for optimization in the basic algorithm. Discarding the \black-box" formalism is undesirable.
The power of BlobTree modeling is largely derived from it’s generality, of which the \black-box"
notion is a critical component. Hence, the only avenue for reducing evaluation cost is to evaluate
fewer tree nodes.

In the following sections, a method will be developed for replacing sub-trees of a BlobTree
model with dynamically-computed scalar �eld approximations. These approximate scalar �elds
can be evaluated in constant time, reducing the cost of evaluating the approximated subtree
from O(N) to O(1). To avoid unnecessary pre-computation overhead, the approximate scalar
�elds are generated using dynamic lazy evaluation. This Hierarchical Spatial Caching technique
is both a caching and an approximation scheme. In a variety of tests, use of hierarchical spatial
caching has been found to produce an order of magnitude reduction in visualization time over
existing techniques.

4.3 Previous Caching and Approximation Schemes

A common approach to reduce the cost of visualizing an implicit surface is to employ caching
schemes. Caching techniques generally try to exploit coherence in the global state of the Blob-
Tree. Caching can happen at many levels, from very coarse caching at the level of inter-frame
temporal coherence, to very �ne caching of node-speci�c variables during during a BlobTree
traversal.

Local update schemes [62, 117, 42, 53, 5, 14] cache surface samples, exploiting temporal
coherence to reduce the number of evaluations of f(p). When the BlobTree is modi�ed, local
support ensures that the changes in f(p) are bounded within some region B. The surface outside
B is guaranteed to be unmodi�ed, and hence the samples outside B need not be recomputed.
Local update schemes do improve interactivity, and can be used with most other caching schemes.
However, they do not fundamentally reduce the cost of evaluating f(p), so large or complex
update regions are still problematic.

BlobTree traversals can also be cached, to some extent. One approach is to generate a cache
tree [48, 51]. A cache tree mirrors the BlobTree, containing a cache node for each tree node.
Temporary variables and �eld values computed during the last tree traversal are stored in each
cache node. The cached values are only valid if the tree is traversed multiple times at a point p.
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Cache trees provide a speed-up mainly in situations where the �eld value and gradient are both
computed at p. If p changes between each evaluation, cache trees actually make evaluation of
f(p) more expensive. A similar approach involves pre-computing values that will be constant
along a 3D ray [15].

Another take on caching traversals is to subdivide space into voxel \bins" and prune the
BlobTree at each bin [48]. The BlobTree is traversed for each voxel, and a new tree is constructed
which only contains nodes that intersect the current bin. These pruned trees are used instead of
the original tree to evaluate f(p). This scheme is based on the observation that for a complex
BlobTree containing nodes with many children, a large number of redundant bounding box tests
may be performed. The pruning step is too expensive to perform interactively, and must be
repeated whenever the tree is modi�ed. Similar speed-ups could likely be achieved with less pre-
computation by dynamically generating bounding box hierarchies at nodes with many children.
However, like cache trees, while performance is de�nitely improved, the gains are not su�cient
to provide interactivity.

The caching schemes mentioned so far are essentially optimization techniques. Visualization
time is reduced by avoiding redundant computation, but the cost of visualizing a BlobTree is
not fundamentally reduced. To achieve this, approximation schemes have been developed which
represent the implicit surface using a BlobTree which has fewer nodes, or nodes that are less
expensive to evaluate. For example, [29] suggests replacing expensive spline primitives with a
set of blended points primitives. This concept has been generalized as level-of-detail or LOD
implicits [15]. Curve and surface primitives based on subdivision skeletons [12, 58] provide a
simple framework for LOD primitives. However, LOD primitives are problematic for interactive
modeling because lower levels of detail do not accurately reect the �nal model. Even if the
surface of the LOD primitive is relatively accurate at lower detail levels, the underlying �eld
may be di�erent, producing a di�erent surface after blending. LOD primitives also only reduce
computational cost at the leaves of the tree, the techniques do not generalize to approximating
the result of composition nodes.

Caching and approximation is combined in spatial caching schemes. A basic spatial cache
can be created by sampling f(p) on a uniform grid. The �eld value at any p can then be
approximated by applying a reconstruction �lter, such as tri-linear interpolation, to a set of
samples near p. This type of spatial cache can support level-of-detail by reducing or increasing
the number of samples stored in the cache. General spatial caches simply approximate the scalar
�eld f(p), instead of attempting to explicitly approximate the implicit surface, and hence can
be applied to both primitives and composition nodes.

Barthe [18] describes a general constructive modeling system based on quadratic interpolation
of uniformly-sampled grids (which are essentially spatial caches). The system allows a designer
to interactively combine two shapes, creating a new sampled grid. The new grid can again
be combined with another, resulting in a binary tree of composition operations. To conserve
memory, the tree of grids is not stored, hence the user can only manipulate the root node (or
append a new node). Frisken [49] describes a similar system but replaces the uniform grids
with adaptively-sampled distance �elds (ADFs) to improve the representation of small details.
Again, tree editing is only supported at the root node - the the notion of procedural modeling
is essentially discarded. Without the hiearchical framework, bene�ts of the BlobTree such as
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animation and non-linear editing are lost.
Akleman [7] describes a related type of spatial caching for ray-tracing certain classes of

implicit surfaces known as ray-quadric surfaces. These primitives, when evaluated along a ray,
reduce to quadratic functions which can be easily solved. The function coe�cients can be cached,
permitting quick ray-surface intersection tests. Ray quadrics can also be functionally composed,
using a somewhat-cumbersome interface based on manipulation of 3D prisms [7]. However,
individual ray-quadrics are limited to \star-shapes" and the caching techniques do not generalize
for use in general constructive modeling systems.

The use of spatial caches in these works demonstrates the computational bene�ts of approx-
imating analytic scalar �elds with discrete sampling. However, none of these systems provided
fully interactive BlobTree-style modeling. Akelman’s [7] caching system does not generalize to
black-box hierarchical modeling. The memory and processing limitations inherent in Barthe’s [18]
approach prevent non-linear editing of the model tree, and hence many of the bene�ts of hiearchi-
cal modeling are lost. Kizamu [49] su�ers from a similar limitation. In some sense, because the
underlying analytic functions are discarded, it is debatable that the use of spatial approximation
in [18] and [49] should even be called caching. Regardless, while the desired level of interactivity
was not achieved, the results are promising and suggest that further investigation is warranted.

4.4 Hierarchical Spatial Caching

To address the shortcomings of previous applications of spatial approximation to hierarchical
implicit modeling, the Hierarchical Spatial Caching method was developed. The underlying
idea in Hierarchical Spatial Caching is is to dynamically insert spatial caches into the BlobTree.
These spatial caches are re-cast as cache nodes which can be placed above any other internal
node in the BlobTree. The samples of f stored in the caches are dynamically computed as
they are needed. The hierarchical caches are also dynamically invalidated (and recomputed) as
the designer modi�es the BlobTree. The main components of Hierarchical Spatial Caching are
described in the following paragraphs.

In previous works, spatial caches have been used at the primitives and at the root of the
hierarchical model tree. Primitive caches do not reduce the cost of evaluating complex trees.
In the BlobTree, where primitives are relatively inexpensive to evaluate [120], primitive caches
provide little bene�t. Global caches do reduce the cost of evaluating f . However, consider
that during interactive manipulation, some region of f is being modi�ed and hence the cache
in that region must be invalidated and recomputed. Similar to local update schemes, if the
modi�ed region is large or expensive to evaluate, the global cache fails to preserve interactivity.
In particular, global caching provides marginal bene�t if a local update scheme is used for surface
visualization.

In contrast to primitive and global caches, the approach taken in hierarchical spatial caching is
to insert spatial caches inside the BlobTree. As noted above, there is marginal bene�t to caching
individual primitives or the root node, so caches are only placed above internal composition
operator nodes. The spatial cache is then formalized in the BlobTree framework as a cache node.
A caching node C is a unary operator with a single subtree T . Each caching node stores a set
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of exact potential �eld values determined by evaluating its subtree T . When evaluating the
potential �eld of T at a point p inside the bounding box of T , an approximation fC(p) to the
exact potential �eld value fT (p) is reconstructed from the cached potential values. The subtree
T is not traversed, reducing the cost of evaluating it from O(N) to O(1) (Figure 4.2).

Figure 4.2: In (a), two cylinder primitives are blended, and then subtracted from a sphere. In (b),
a cache node is inserted above the blend node, reducing the cost of evaluating the blend sub-tree.

Previous applications of spatial approximation to constructive implicit modeling have entirely
replaced the analytic functions with discretely-sampled grids [18, 49]. In this situation, all grid
samples must be stored and updated at all times. However, in the case of cache nodes, the
underlying analytic BlobTree functions are not discarded. Hence, cache samples can be computed
on-demand, and there is no reason to store fully evaluated grids. When a cache node is to be
evaluated at a point p, the cache data structure is inspected to determine if the samples required
to reconstruct fT (p) are available. If some are not, they are �rst computed, and then fC(p) is
evaluated. In short, cache nodes are �lled using lazy evaluation (Figure 4.3).

Lazy evaluation is a signi�cant bene�t, as full evaluation of high-resolution grids is computa-
tionally intensive. In addition, if surface-tracking visualization algorithms are used, only cache
samples near the surface are necessary. In this case most of the samples in a fully evaluated grid
will never be used - particularly if they will be invalidated in the next frame as the user drags a
primitive across the screen.

Since Hierarchical Spatial Caching involves replacing analytic scalar functions with discrete
samplings, it is an approximation scheme. However, because cache nodes are dynamically ini-
tialized based on evaluations of f(p), and subtree traversals are dynamically truncated, cache
nodes can also be considered traversal caches. The novelty of Hierarchical Spatial Caching is
the combination of spatial approximation with traversal caching. Individually, these techniques
have limited ability to reduce the cost of interactive visualization for a complex BlobTree. When
combined they can produce an order-of-magnitude reduction in visualization time.
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Figure 4.3: Lazy evaluation process. In (a), the �eld values necessary to reconstruct the value
at the incoming query point (in blue) are unavailable. The child �eld must be evaluated 4 times,
once for each cache value (b). In (c), two cache values are missing and must be evaluated in the
child �eld (d). Finally, in (e) all cache values are available. The incoming value query can be
directly approximated in O(1) time, no O(N) evaluations of the child �eld are necessary.

4.5 Hierarchical Spatial Caching Implementation Issues

A number of design decisions must be made when implementing hierarchical spatial caching. The
choice of sampling scheme is paramount to the performance and accuracy of any spatial approx-
imation scheme, however several other implementation details hold regardless of the particular
sampling scheme.

The �rst issue relates to dynamic cache invalidation. During tree traversals in a standard
BlobTree implementation, child nodes are evaluated by their parents. Child nodes never initiate
events - there is no upward communication. However, to implement dynamic cache invalidation,
there must be some mechanism to tell a parent node when it’s child has been modi�ed. Each
node on the path from the modi�ed child to the root node must be noti�ed, so that any cache
nodes on the path have a chance to discard now-invalid cache values.

There are essentially two option for implementing this parent noti�cation. One option is
to use an external noti�cation scheme - an \oracle", which knows about all the nodes in the
model tree and can explicitly notify them. This scheme preserves the top-down organization
of the BlobTree - children do not need to know their parents. Also, the oracle can accumulate
invalidation events and then only notify each node once, which can be more e�cient if multiple
children change simultaneously. The second option is to use a parent-noti�cation scheme, where
invalidation events are passed up the model tree from child to parent. This scheme preserves
the desirable BlobTree properties of encapsulation and local knowledge, at the cost of possible
repeated noti�cations. There is no clear winner between these options. The oracle introduces
signi�cant implementation complexity, however the upward-noti�cation approach may be less
e�cient.

The actual process of invalidating a cache node is somewhat dependent on the particular
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spatial caching scheme. However, in general invalidation occurs based on some bounding region.
When initiating an invalidation event, the modi�ed child should compute a bounding volume
for the updated region. Note that when a change to the child modi�es the bounding volume,
both the old and new volumes must be invalidated. While two events can be sent, it can be
more e�cient to join the bounding volumes and send a single event. Of course, the smaller
the bounding volume the better, however this must be weighed against the cost of computing a
more accurate bounding volume. The simplest approach is to take the union of the \before" and
\after" bounding boxes of the modi�ed node, and invalidate this entire region. However, some
relatively simple optimizations can be made, particularly at composition nodes. For example,
when changing the blending parameter on a Ricci blend (Section 2.3), only the intersection of
the child bounding boxes must be invalidated.

Another issue concerns the amount of coupling between the cache node and it’s subtree. In
the previous section, the cache node C was described as simply another type of BlobTree node.
While this is a useful abstraction that �ts cleanly into the BlobTree conceptual framework, it
does not necessarily lead to the most e�cient implementation. Consider the spatial cache of an
additive blend operator (Section 2.4) applied to two �elds, one a simple primitive fA and another
a complex sub-tree fB. In this case, each value in the cache is the sum of the two child �eld
values, fA + fB. If the simple primitive is modi�ed, two cache update strategies are possible.
The one described so far would entail clearing all the cached values in the bounding box of fA,
and then re-computing fA + fB as necessary. The second option is to add the value �fA to
each cached value, and then only re-compute fA as needed and add it to the cached values. The
re-evaluation of expensive-to-compute values of fB is avoided.

This \removal" of sub-tree values from the cache, or partial-invalidation, can be applied to
any operator for which the contribution of a particular child can be computed based soley on
the �eld value of that child. These operators in general will be called separable. Some analysis
of separable operators is provided by Akleman [8]1

Combining lazy-evaluation with partial-invalidation introduces another complication. Some
book-keeping is necessary to keep track of which cache values contain fA + fB, and which only
contain fB. In the case of uniform grids, a separate grid can be maintained, where each grid
cell contains a set of bit ags, one for each child of the composition operation. This additional
overhead, combined with the necessity of re-computing values of fA to subtract them from
existing cached values, makes partial-invalidation impractical unless the overhead is lower than
the cost of re-computing fB.

To support partial-invalidation, cache nodes now must be aware of whether or not they are
caching a separable operator, whether or not partial-invalidation is warranted, and if so, the book-
keeping bit-masks for each child of the operator. Cache nodes that support partial-invalidation
are no longer traditional black-box BlobTree nodes. In fact, since the child of a cache node will
always be an operator (Section 4.4), it can be more e�cient to discard with the notion of a
separate \cache node" entirely, and simply attach a spatial cache to each operator. This type of
direct spatial caching at operators can be considered tightly-coupled spatial caching, as opposed
to the loosely-coupled abstract cache node of Section 4.4 (Figure 4.4).

1In this work, separable operators are referred to as \constant time updateable" operators.
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Figure 4.4: Loosely-coupled cache node (a) and tightly-coupled caching blend node (b).

Finally, a critical issue is positioning of caches in the model tree. In theory, a cache node
could be placed above each composition operator. However, this introduces two complications.
First, cache nodes necessarily introduce approximation error, which would accumulate in each
successive cache. The caches at the top of a deep model tree would have excessive error. Second,
when a leaf node in the tree is modi�ed, invalidation and lazy evaluation of all the intervening
caches becomes incredibly expensive, negating the bene�ts of hierarchical caching. Clearly, caches
should be used sparingly, where they will provide the greatest bene�t. However, determining
these locations is di�cult. The simplest option is to leave cache placement to the model designer,
however this is clearly undesirable.

An alternative is to take an algorithmic approach to cache management, determining place-
ment of cache nodes automatically. Static optimization techniques based on properties such as
tree depth and node complexity may not produce results which are optimal for interactive manip-
ulation. Instead, cache management algorithms should take into account the current actions of
the user, minimizing the number of caches along the path to the node being manipulated. This
may necessitate dynamic tree rewriting, where an equivalent BlobTree is generated in which
the node being modi�ed is segmented from any operators which are cached. Extensive investi-
gation of such techniques has not been carried out, however an initial attempt is described in
Section 4.7.5.

4.6 Sampling and Reconstruction

Two choices must be made to implement a spatial caching node which approximates a scalar
�eld f . First, a sampling scheme must be chosen. The alternatives are uniform sampling, as
used by [18, 7], or some form of adaptive sampling, such as octree-ADFs [49]. For most sampling
schemes, multiple reconstruction �lters are available which produce an approximation to f from
the given samples.

Ideally, adaptive sampling schemes provide more accurate approximation and use less mem-
ory. Octree-ADFs have emerged as a leading approach for approximating distance �elds [49].
However, several un-addressed issues with the ADF method, and adaptive sampling schemes in
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general, make them unsuitable for use in Hierarchical Spatial Caching. These issues are discussed
in more detail in Section 4.9. Due to these shortcomings, uniform sampling seems to be the most
feasible approach to implementing cache nodes.

A variety of reconstruction �lters compatible with uniform sampling have been developed,
and are thoroughly analyzed in [69]. The most popular �lter is the tri-linear �lter, which is
the three-dimensional extension of basic linear interpolation. The tri-linear �lter is simply a
linear interpolation between the 8 nearest sample values. The technique is described in detail
in Appendix A. The key limitation of this �lter is that it is only C0 continuous - gradient
discontinuities occur along the edges between each sample.

As discussed in Section 2.7, C1 continuity is desirable to avoid shading artifacts. A cubic C2

�lter is analyzed in [69], however this �lter is very costly because reconstruction at a point p

requires 64 neighbouring samples and 21 cubic polynomial evaluations. To reduce this cost, [71]
introduced a C1 tri-quadratic �lter which requires only 27 neighbours and 13 quadratic polyno-
mial evaluations. These quadratic polynomials do not pass through the original sample values,
resulting in the reconstructed scalar �eld being smoothed out. In particular, small features can
be lost. Hence, unlike the interpolating tri-linear �lter, the tri-quadratic �lter is an approximating
�lter.

As is clear from Figure 4.5, the C1 tri-quadratic �lter provides superior visual results when
compared to the C0 tri-linear �lter. However, because the tri-quadratic �lter requires over 3
times as many neighbour samples and signi�cantly more computation, it is more expensive to
evaluate. In practice, it was found that tri-quadratic reconstruction was approximately twice as
expensive as tri-linear reconstruction, when integrated into hierarchical spatial caching.

Figure 4.5: Tri-Linear (a) and Tri-Quadratic (b) gradients. Close-up of (c) un-cached sharp
features, (d) tri-linear interpolation, and (e) tri-quadratic approximation.

While this extra cost is undesirable, two observations can be made. First, for many visual-
ization algorithms, signi�cantly more evaluations of f are performed than of rf . Second, the
C1 continuity necessary to produce smooth shading is only is only required in rf . Hence, a
third reconstruction option is to use the cheaper tri-linear �lter to reconstruct f , and the C1

tri-quadratic �lter to reconstruct rf . In practice, this approach was only 10% more expensive
than a pure tri-linear approach.

Using di�erent �lters for f and rf necessarily introduces a discrepancy between surface
vertices and surface normals. However, if the uniform sampling resolution is reasonably high,



41

and the polygonization resolution is on the order of the grid resolution, then these di�erences
are not visually apparent. A more serious problem may occur for surface-convergence algorithms
which assume that rf points towards the surface. This may not be true with mixed �lters, so
a pure tri-quadratic approach would be necessary.

One �nal issue with both the tri-linear and tri-quadratic �lters is that it is not possible
to reconstruct sharp edges. As shown in Figure 4.5, the tri-linear �lter smooths out creases
except when the crease lies on the edge between two samples. The tri-quadratic �lter smooths
out all creases. In fact, all the uniform-sampling reconstruction �lters analyzed by [69] fail to
reproduce sharp edges. Similar problems are encountered with adaptive sampling. A claim has
been made that ADFs can reconstruct sharp edges [49], however this is technically not accurate.
Due to very high sampling resolution, ADF surfaces appear to have creases when viewed from a
distance. However, when viewed from closer distances the same problems as shown in Figure 4.5d
will appear, since ADFs use tri-linear reconstruction.

4.7 A Sample Spatial Caching Implementation

To analyze the performance bene�ts of hierarchical spatial caching, a sample C++ implemen-
tation was created. As discussed in Section 4.6, uniform grids appear to currently be the most
e�ective approach to dynamic spatial caching, and are used in the test system. By default, tri-
linear reconstruction is used for �eld values and tri-quadratic reconstruction for �eld gradients,
although these options can be toggled interactively.

In terms of the design options described in Section 4.5, the test implementation utilizes
tightly-coupled caches attached to composition operator nodes. Parent-noti�cation based on axis-
aligned bounding boxes is used for cache invalidation, rather than an external oracle. Although
far from optimal, the union of \before" and \after" bounding boxes is used for invalidation in
all cases.

An automatic cache placement algorithm is applied (described below), however caching at an
operator node can be directly controlled by the designer. Automatic cache placement is not con-
trolled directly by the operator nodes, rather a central cache manager object determines whether
the cache at an operator should be enabled. This manager can also perform some rudimentary
automatic model tree optimizations, such as removing redundant composition operators.

A variety of speci�c optimizations and enhancements have been implemented to improve
the results of hierarchical spatial caching. These improvements are discussed in the following
sections.

4.7.1 Dynamic Grid Resolution

Reconstruction accuracy is entirely dependent on the uniform grid resolution. To reduce under-
and over-sampling, the test implementation de�nes the initial cache resolution based on the axis-
aligned bounding box of the subtree T and a user-de�ned grid resolution r. Let s denote the
longest side of the bounding box of T . The size of each grid cell is then de�ned as

c = s=r
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If the bounding box of T changes (due to some interactive operation), a new cell size c0 is
computed. If the ratio c0=c is greater than 2 or less than 0:5, the current cache is destroyed, and
the cache cell size set to c0. This prevents cache resolution both from getting too low, which
would result in a coarse approximation of the surface, as well as from getting too high and wasting
memory. Based on empirical observations, an default value of r = 128 provided reasonable cache
accuracy without excessive update overhead.

No attempt is made to transfer the existing cache values to the new cache. In the case of under-
sampling this would clearly be undesirable. It may be bene�cial in over-sampling situations,
however these seem to be fairly rare in practice, so this optimization was not implemented.
Instead, the lazy evaluation scheme automatically re-populates the cache as required.

4.7.2 Cache Coordinate System

Some of the most common operations in interactive modeling are the basic a�ne transformations
- translation, rotation, and scaling. In a naive implementation, these transformations would be
applied to the child of a caching node, causing an expensive cache invalidation. A more e�cient
approach is to apply the transformation to the cache itself. In the test implementation, each cache
has a local coordinate system. A�ne transformations applied to the operator node are applied to
the associated cache coordinate system as well. This avoids any unnecessary invalidation when
transforming the operator node.

Note that avoiding a�ne-transformation invalidation is more complicated when using loosely-
coupled cache nodes (Section 4.5). In that case, transformation nodes are required, and transfor-
mations applied to the child of a cache should always be pushed above the cache node. Ensuring
this behavior again requires a global view of the BlobTree.

4.7.3 Blocked Memory Allocation

High-resolution uniform 3D grids can require signi�cant amounts of memory. A fully-evaluated
1283 cache of single-precision oating point values requires 8MB of memory. Current hardware
limitations prevent storing a signi�cant number of �xed caches at this resolution. In addition, the
volume represented by a single cache can expand, making a �xed grid data structure undesirable
because it must then be re-allocated.

To reduce memory usage and avoid expensive re-allocation, uniform 3D grids in the test
implementation were allocated using a blocked memory scheme. The uniform grid is divided
into k � k � k blocks of voxels, where k is the block resolution. A voxel block is allocated only
when one of the voxels it contains is needed to compute a �eld value. The blocks are quickly
identi�ed using a 30-bit hash, with 10 bits per integer grid axis coordinate [118]2. This approach
saves memory because continuation methods for polygonizing implicit surfaces [26] are designed
to follow the surface, hence the required voxels will also be near the surface. Blocks further from
the surface may remain completely untouched, and hence unallocated. As k decreases, fewer and
fewer blocks need be allocated, further reducing memory usage.

2This method limits the total grid size to (1024 � k)3 voxels with 32-bit integers.
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However, k also a�ects the cost of sampling and cache invalidation. Sampling is more ex-
pensive because the required neighbours of a particular cell may lie in other blocks, which then
need to be looked up with a relatively expensive hash-table access (compared to simply adding a
constant to the current index). The smaller the block size, the more likely this is to occur. Also,
invalidation becomes more expensive because the invalidated cells must be processed block-by-
block. As k decreases it becomes increasingly expensive to �nd and invalidate all the a�ected
blocks. On the test system, good results were found with a grid resolution of k = 8. Reduc-
ing k to 4 cut average memory usage by approximately 20%, but increased update times by
approximately 25%.

Block size also inuences low-level hardware e�ciency. Current workstation processors con-
tain several levels of hardware memory cache to reduce memory access latency. The traditional
static allocation of a large 3D uniform grid causes frequent cache misses, particularly when ac-
cessing adjacent voxels along the z axis. This blocked allocation scheme potentially increases
processor cache coherency if the block size �ts in a cache line, although this e�ect is di�cult to
isolate.

Memory requirements can be reduced even further by using an encoding scheme, at the
expense of some reconstruction accuracy. The range of potential �eld values that can occur in
our system is small. Memory usage can be reduced 50 � 75% percent by encoding oating point
values as one or two-byte integers. This technique is slightly more computationally expensive
and decreases accuracy, so it is not used in the test implementation.

4.7.4 Last-Access Caching

As noted in the previous section, looking up the required neighbour values to evaluate a recon-
struction �lter at a particular grid cell can be a signi�cant cost. The blocked memory scheme
only increases this cost. To o�set this expense, a last-access cache is employed. During recon-
struction �lter evaluation, the cached neighbour values are saved. If the next �lter evaluation
occurs in the same cell, the saved values can be used directly, avoiding the relatively expensive
neighbour cell lookups.

While it may seem unlikely that the last-access cache would provide much bene�t, during
convergence iterations 2.9 the same cell is often accessed multiple times. The speed-up provided
by last-access caching has not been analyzed, however it introduces negligible overhead so there
is really no reason not to use it.

4.7.5 Dynamic Cache Placement

As noted previously, the e�cacy of hierarchical spatial caching is dependent on the positioning of
caches in the model tree. The automatic cache-placement algorithm used in the test implemen-
tation is relatively simple. Placement decisions are based on two assumptions - that primitives
are quick to evaluate, and that most interactive operations take place near the root of the tree.

First, caches are only allocated to operator nodes that have at least two children. Most
operators have no e�ect on a single child, and the child will either be an operator with a cache,
or a primitive. Based on the fast-primitive assumption, caches are also not allocated if all the
children of an operator are primitives. Second, caches are only allocated to nodes within n levels
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from the root node, where n is a small integer (n = 3 in the test implementation). Caches that
fall below this threshold as the model tree changes are discarded.

These rudimentary placement rules prove to be quite e�ective in practice. In particular, for
the prototype system described here, a quick response is seen for interactive operations performed
near the root of the tree. Operations closer to the tree leaves are slower, however in many cases
this can be mitigated by re-organizing the model tree to favor breadth over depth. For example,
the sketch-based interface 6 simply appends nodes to the top of the tree. If a body is drawn
�rst, and then an arm, the body is a child of the arm and is slow to manipulate. If the tree
is manually re-organized, overall interactivity is greatly increased. This leads to the conclusion
that interfaces which assist in the creation of well-organized model trees may be more e�ective
at increasing caching e�ciency than smarter cache-placement algorihtms.

4.8 Results and Analysis

Hierarchical Spatial Caching has been evaluated in the context of the ShapeShop modeling
system (Chapter 6). To analyze performance, polygonization times with and without caching
nodes have been compared. The polygonizer in use is an an optimized version of the implicit
surface polygonizer described in [26] with the optional cubical decomposition enabled. When
computing a mesh vertex on a cube edge, 10 bisections were performed to locate the implicit
surface.

The software was compiled using the Microsoft Visual Studio 2003 C++ compiller in Release
mode with default optimization ags. All timings reported below were performed on a laptop
with an Intel 1.6Ghz Mobile Pentium 4 processor and 512MB of RAM.

Detailed pro�ling has been carried out using the complex hierarchical Medusa model shown
in Figure 4.6. The model is composed of 9490 point skeletal elements segmented into 7 major
components. Each major component is modeled as a blend of point skeletal elements distributed
along a set of splines. All the points along each individual spline are grouped together into a
single optimized blend node to avoid excessive tree traversal costs. The point counts of the 7
components are shown in Figure 4.6.

A caching node with a resolution of 1283 voxels3 was placed above each major component
in the model tree. Potential �eld reconstruction accuracy was evaluated by comparing recon-
structed and exact �eld values at triangle mesh vertices. Using this method, the mean tri-linear
reconstruction error for the Medusa model with 1283 voxel caches is estimated to be approxi-
mately 3%, computed by comparing the real and approximate �eld values at mesh vertices. The
error is concentrated in high-frequency regions, particularly the head. While a global measure of
reconstruction accuracy has not been devised, it is suspected that the global error will be simi-
lar to the near-surface error because the cache spacing is uniform. Also, note that the modeling
technique of blending many points along spline curves used to create the medusa model produces
very high normalization error (Section 2.9), resulting in higher approximation error.

While the results discussed in this section focus on the Medusa model, the reductions in

31283 was chosen because powers-of-two produce the most e�cient memory alignment, and it was the lowest
value which produced a smooth approximation of all the Medusa components, see Figure 4.9.
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Figure 4.6: Medusa model composed of 9490 point primitives (left) grouped into 7 major compo-
nents - lower body, upper body, neck, chest, left hand, hair, and head. Note that the right hand
is part of the upper body component, while the left hand is separated.

computation time have been found to apply to found to apply tohierarchical implicit modeling
in general. Comparable measurements have been observed with awide variety of other simple and
complex models. The Medusa model is focused on here because it is the most computationally
expensive model that was available and has a wide range of feature scales.

4.8.1 Static Polygonization Time

Static polygonization times for the Medusa model with and without caching nodes are compared
in Table 4.1. All caches were cleared before each polygonization, and all reported times are an
average of 5 tests. In all cases the cached polygonization contained less than 1% more triangles
that the non-cached polygonization.

Cubes Cache No Cache Ratio

323 5:77 4:90 0:8�

643 10:34 14:36 1:4�

1283 17:40 51:97 3�

2563 29:23 199:37 6:5�

5123 49:83 809:66 16�

Table 4.1: Comparison of cached and non-cached polygonization times (in seconds) for Medusa
model at di�erent polygonization resolutions.

Polygonization time without caching increases by approximately a factor of 4 when resolution
doubles. Polygonization time with caching is initially slower than without because 8 voxels are
required to compute a single tri-linear interpolation. Subsequently, polygonization time reduces
as the cache is populated. The ratio between cached times at consective resolutions decreases


